Hardware Accelerated Visual Attention Algorithm

Polina Akselrod, Faye Zhab, Ifigeneia Derekli, Clement Farab&, Berin Martini!
Yann LeCuni and Eugenio Culurciello
I Electrical Engineering Department, Yale University, Newvien, USA
2 The Courant Institute of Mathematical Sciences and CewteNEural Science, New York University, USA

Abstract— We present a hardware-accelerated implementation aim at validating the performance and evaluating the rumnnin

of a bottom-up visual attention algorithm. This algorithm gen- time. Sectiorf.MI concludes the paper.
erates a multi-scale saliency map from differences in image

intensity, color, presence of edges and presence of motiofhe Il. ALGORITHM

visual attention algorithm is computed on a custom-desigre -
FPGA-based dataflow computer for general-purpose state-ethe- The vision algorithm we used in this paper is based on

art vision algorithms. The vision algorithm is acceleratedby our ~ the model, described in [1]. The goal of the algorithm is to
hardware platform and reports x4 speedup when compared to locate the points of visual attention in the input RGB imagye (

a standard laptop with a 2.26 GHz Intel Dual Core processor video). For this purpose, several feature maps are computed
and for image sizes of480 x 480 pixels. We developed a real These maps indicate differences in intensity and color, and

time demo application capable of> 12 frames per second with L : .
the same size images. We also compared the results of thdeport edges and motion in the scene. The linear combination

hardware implementation of the algorithm to the eye fixation Of the feature maps yields the saliency map. To detect fine as
points of different subjects on six video sequences. We findhat Wwell as coarse details of the input image, a pyramid of sdales
our implementation achieves precisions of fixation predidgons of used. Different scales are obtained by subsampling the maps
up to 1/14th of the size of time video frames. The final saliency map is a linear combination of interpolasi
of intermediate saliency maps on different scales. The maxi
of the saliency map are defined to be the principal points of
Visual attention algorithm have been a subject of intengésual attention.
research for many years. Several models of visual attentionPue to our custom hardware, we have introduced a few
have been proposed to identify image location of interedt amodifications (see SectidnllV for more details). Below we
saliency, and to model the way human observers move th@gscribe the algorithm that we used to calculate all thaifeat
eyes in response to bottom-up features in the image [1], [Z}aps and the saliency map. Suppose tha the input image
[3], [4], [5]. Visual attention is used not only to predicteth With 3 color channels, denoted b, G, B. The intensity
visual attractiveness of locations in an image, but alsaiideg feature mapl is defined by equatiold 1.
vision towards target objects of interest. It is also used in
psychophysics experiments_with complex stimuli in an effo_r 1=0299 R+0587-G+0.114- B @
to understand the human visual system However, computing
attention algorithms is computationally intense. Thisuéss In other words, intensity is a weighted average of the
becomes critical in real-time applications dealing withgka three channels. To detect the difference in color, we define
scale images. two feature mapsRG (red-green) andBY (blue-yellow) by
In this paper, we describe a hardware-accelerated impgguatiorP[B.
mentation of a visual attention algorithm, based on the hode
described in"A model of saliency-based visual attention for R-G

|. INTRODUCTION

rapid scene analysisby L. Itti, Ch. Koch & E. Niebur [1]. RG = I 2)
The core computations of the algorithm are performed on our

custom-designed hardware namdduFlow[6]. This system B—(R+Q)/2

was developed with the purpose of accelerating general- BY = —————— 3)

purpose vision algorithms [7], [8]. The use of hardware
allowed us to run the algonthm_ in a real-time application %tensity mapl with the 3 x 3 Laplacian kernel (Ker) , as in
over 12 frames per second for images of si2é x 480. ;

. . e equatiorH.

This paper has the following organizartion: in Sectidn II,

we describe the visual attention model on which we base our
implementation. In Sectidill, we briefly discuss the Neal - o - A
hardware system, that we used to accelerate the algorithm. | £ = [* KerjwithKer = { -1 . -1 4)
Section[T¥, we describe the implementation details as well 0 - 0
as several modifications of the original model that we have The motion is detected by calculating the temporal differ-
introduced. In SectiofllV, we report on several experiméres t encel D between the intensities of two consecutive frames

The edges feature map is computed by convolving the

0o -1 0

and I, of the video input. In other wordg; D is defined by
equatior[b.

A Runtime Reconfigurable Dataflow Architecture

PT [-‘M ™ PT !“';U_IX-J PT {E&X.
TD=1,—1 (5) XDD } XD } XD }
The saliency map is defined /AL, in equatiodB.SAL, ®08 : ®e8 : 2 .
:nz I\/T/elghted average of the feature mdpd, E, RG, BY PT (o 1T Eﬂ PT EE{}
VD & VO ¢ VO ¢
@DEE OEE D&
SAL, =0.6-TD+03-E+0.1-(I+RG+BY) (6) . : :
o o e o (x|
To compute ak-scaled mapS;, of the input imageS, we L Mt L M W=
subsample the image in the following way. Suppose that QO 4 QO & ROD ¢
is ann x n image. We subdivide it int& x k squares. Each BHOE OO O

entry of S, is the average of the corresponding square. In other
words, S is an(n/k) x (n/k) image, whos€i, j)—entry is

® Configurable Route

- Global Data Lines

~— Runtime Config Bus

Off-chip
Memory

Smart DMA

Control
& Config

Fig. 1. A data-flow computer. A set of runtime configurablegassing tiles

are connected on a 2D grid. They can exchange data with the@ighbors

defined by equatiolll 7, wheiej = 0,1,...(n/k) — 1.
1 k—1k—1
Sk(z‘,j):EZZS(k-i+l,k~j+r) (7)
=0 r=0

The saliency maps corresponding to different scales are
linearly combined to yield the final saliency map, as exg@din
in details in Sectiof . IV.

IIl. HARDWARE

The vision algorithms are accelerated by a data-flow com-
puter architecture NeuFlow. The hardware was designed 2 Flow
perform computations typical to various vision tasks (see '
"Bio-Inspired Vision Processor for Ultra-Fast Object Cate
gorization” by C. Farabet et al. [7] for more details). In this
section, we give a short description of the hardware we use,
A more detailed description can be found in [7], [8], [6].

In our implementation of the visual attention algorithm,
explained in Sectioflll, the computations are accelerayetid
custom hardware (here add reference to the chapter). NeuF
(see [6]) runs on a commercial Xilinx ML605 FPGA boari
(XCBVLX240T device). Communication between the FPG
board and the host computer is performed via Gigabit Ethierne
NeuFlow, pictured in FigurEl1, is first configured to perform
a certain set of computations, then the data is streameddin a
finally the result is routed back to the memory. The archite
ture is parametrizable and reconfigurable at runtime, stingi
of a computational grid, a DMA interface to memory,
custom processor serving as controller of the system.

The compute grid consists of processing tiles. Each tir’
can be configured to perform a simple arithmetic operation,
2D convolution, piecewise linear approximation of a function
etc. The tiles are connected to local data lines, and a rgputiW
multiplexer connects the local data lines to global datedior
to neighboring tiles. Convolution is one of the operatidmastt
are best accelerated, as each datum (pixel) can be used for up
to K x K parallel operations—when convolving withiax K

and a

kernel. NeuFlow has been able to instantiate (and sustgin) u B(i
to four 10 x 10 2D convolvers, or si¥ x 9 convolvers (on the
XC6VLX240T FPGA). where i, j

and with an off-chip memory via global lines.

IV. IMPLEMENTATION

k

NIEDY

=0

1k—

1

A+ j+r) - K(,7)
r=0

In this section, we provide technical detail on the imple-
mentation of the visual attention algorithm of Secfidn lings
the hardware, described in Sect[ad I11. In addition, we dbsc
several modifications we have introduced to the algorithm in
rder to accelerate its performance in our hardware platfor

The implementation of the attention algorithm requireshsuc
operations as multiplication of a matrix by a scalar, additi
and subtraction of several matrices, entry-wise divisibore
matrix by another, and subsampling (see equatidnd{1)@g),
, @), [@)). Basic arithmetical operations on the NewFlo

ardware are sequential [7]. For example, if we want the
n)ardware to add two matrices, only two entries will be added
p at one cycle. The NeuFlow system runs at 200 MHz, while
he frequency of the standard processor of a modern desktop o
laptop computer is more than 2 GHz. Therefore, performance
of sequential operations on NeuFlow does not offer any speed

~On the other hand, NeuFlow carries out convolutions in
fhe parallel manner [7], therefore convolutions on NeuFlow
are computed significantly faster than on a standard compute
processor. Therefore to accelerate computations via faasjw
e need to represent them as convolutions. Below we describe
e types of convolutions NeuFlow is able to perform.

e recall that the convolution of am x n input matrix A
ith ak x k kernel matrix Kis anln —k+1) x (n —k+1)
output matrix B, whose elements are computed by equation

(8)

= 0,...,n — k. NeuFlow allows the user

to perform several convolutions at once. Depending on the N1 , o]
number of inputs, kernels and outputs, we distinguish betwe \Q@
several cases. IN2 4

In the first case, there is one input matidx, m kernels ks
Ky,...,K, and m outputs Oq,...,0,,, as described in IN3 ke 02|
Figurel2.

Fig. 4. Third type of convolution:#inputs > 1 and #inputs X
Foutputs == Fkernels.

O1 =1 * Ky,
‘ division is implemented in the sequential manner. The fdamu
Om = I % K. @) for the edges feature mdp is already a convolution per-
formed with a convolution of the second type. Thescaled
map S, (defined via [[¥)) can be viewed as the subsampled
> type one convolution of with the kernel in equatiof] 9.
IN1 k2
. 1 .- 1
Suby, = e : 9
Fig. 2. First type of convolution#inputs == 1 and #inputs x 1 - 1
#Houtputs == F#kernels.) . .
By subsampling we mean that instead (8) a slightly
In the second case, there andnputs]i, ..., I,,, m kernels modified equatioi 0.
Ky,..., K, andm outputsOq,...,0,, , as described in
Figure[3. k—1k—1
B(i,j)=>_ > A(k-i+1Lk-j+r)-K(,r), (10)
=0 r=0
Oy =11 x Ky,) = :
is used, where, j = 0,...,(n/k) — 1. For example, in[{7)
T with & = 2
Oy =1, x K,,.
~ (S(0,0) S(0,1) 1/4 1/4
-« 52(0,0) = (S(l,O) sany) s 1) @D
= @ and the rest of the entries 6 are evaluated in a similar
fashion.
N3 K3 On the final stage of the algorithm, the saliency maps on
four different scales = 1,2,4,8) are combined into the
Fig. 3. Second type of convolution#inputs == #outputs and final saliency map by interpolation and averaging. We use
#inputs X #outputs == Ffkernels. convolution of the third type for this operation. Howevar, i

) our implementation we replace interpolation by subsangplin
In the third case the number of kernels equals the productye conclude this section with an explicit list of the steps

of the number of inputs and the number of outputs. As our version of the visual attention algorithm.
opposed to the two previous cases, each output is obtained

. . . X » Receive one: x n image with 3 channel®, G, B.
by accumulation of the convolutions of all the inputs witle th " 9 L

) o .) o Compute thexxn mapsl, RG, BY, T D via the formulae
corresponding kernels. This is exemplified on Fiddre 4. & th . : .
settings described by this figure, the outpGts and O, are @, @), @),), respectively’D is computed only if the

i input is a video, and not a single image.
computed by: « Subsample at the scalés= 2,4,8 to obtain the maps
I, RGy,, BY},, T Dy, (by using the formula[{7)).
O1 =L+ K+ I % Ko + I3 % Ky o Compute the edges maps Es, E4, Es on four different
Oy = I % K4+ In # K + I % Kg scales with eq.[{4). For exampl&, = I * Ker is a
(n/2) x (n/2) map.
The formulal(1) for the intensity is evaluated via NeuFlow « Compute the saliency magsAL,, SAL>, SAL4, SALg
as the convolution of the third type. In other words, theghre on four different scales with ed1(6).
channelsR, G, B are convolved with threé x 1 kernels, and « SubsampleSAL,,SAL,, SAL, to reduce their size to
the results are accumulated info (@), (3) and [b) (forRG, (n/8) x (n/8). In other words,SAL; is subsampled at
BY andT'D, respectively) are evaluated with convolution of the scal&3, SAL, is subsampled at the scalendSAL,
the third type in a similar way, with the difference that the is subsampled at the scale(see [T)).

« Average the four subsampled saliency maps into the fitabst computer and the FPGA board. Nevertheless, the use of
(n/8) x (n/8) saliency mapSAL. In other words: the NeuFlow system leads to a noticeable acceleration.
In the first experiment, we run both software and hardware
SALy)s + (SAL)s + (SALy)s + SALg versions of the alg(_)rithm on RGB images of sirzg< n for
1 several values ofi, in order to evaluate running times. One
region of attention of size 1 is located (the position of the

The saliency mapSAL is used to locate the regions ofgiopal maximum in the saliency mapAL).
visual attention. In our implementation, given the reqedst

number M of the regions of attention and their sizs we 18
subdivide SAL into equal squares of siz8 x S. In each
square,SAL attains a maximum. Among thege/(85))>
maxima, we find\/ largest values. The corresponding squares
are declared to be the regions of attention (ordered acugprdi
to the corresponding maximal values). We use a heap of size
M to find these maxima.

SAL:(

/cpufps
=
~

=
o
:

fps

Ratio: board
=
[}

V. RESULTS
In this section, we illustrate our implementation of thewak 1.4
attention algorithm via several experiments. In particulee
compare two implementations of the algorithm. In the first 1 ‘ ‘ ‘ ‘
T00 200 300 400 500 600

implementation, all the computations are performed on the
host computer in software. In the second implementatiom, th
core computations are carried out on our hardware NeuFl@w. 6. Speedup of hardware implementation as ratio betwéenFlow
system. All the experiments were carried out on a standdpgrdware) and computer processor (software) implementaimeasured in
. frames per seconds [fps].

modern laptop computer, with a 2.26 GHz Intel Dual Coré

processor and 4 GB of RAM. The software version of the

algorithm was implemented in C, with API developed in the | Figure[, we plot the reciprocal of the running time (in
high-level Lua language running on a single thread. frames per seconds) as a function of the image height/width

n. The dots correspond to the hardware version (using FPGA-

Image size in pixels

40 o0 : based NeuFlow). The circles correspond to the software ver-
omputer CPU . .
35| —=Hardware FPGA|| sion. The hardware reports up to 12 fps for a 50800 image.
In addition, in Figurds we plot the ratio of the software vs
T 30 hardware running time’.
g We note that in FigureEl 4] 6 the running time includes
§25’ capture of the images by the camera, resizing, sending the
o 20} image to the FPGA (in case of the hardware version), evalu-
= ation of the saliency map, search for the regions of attantio
I 15 and display of the result (as an image with marked regions
of attention). In other words, this running time refers to a
101 realtime demo application that we have developed to test and
demonstrate the algorithm.

oo 200 - 800 . 400 500 600 On the other hand, we can compare the running time of the
ge size in pixels . o)
evaluation ofSAL only. In other words, this is the time spent
Fig. 5. Frames per second of the visual attention algoritmplémented on from the beginning of the evaluation of the feature maps till
a computer processor (software) and on NeuFlow (hardware). the end of the evaluation of the saliency map. In Fidtire 7, we
plot this running time in seconds, as a function of the image

The NeuFlow hardware version of the algorithm consists geight/widthn. The dots correspond to the hardware version.

several modules. The images are sent from the host compJ:[QF' circles correspond to the software version. In Fiddre 8,

to NeuFlow, while the saliency mapAL is computed on the we plot the ratio of_the two. .

hardware and sent back to the host computer. The communiSeveral observations can be made from Figlifes 7hnd 8.

cation modules and API are implemented in C and Lua fore The running time of the software version (computations
Gigabit Ethernet. To locate the regions of visual attenttoe only) grows roughly quadratically with the size of the

saliency map is processed on the host computer. Note that input, as expected.

only part of the computations are performed on hardware, and The running time of the hardware version, on the other
additional time is spent on the communication between the hand, grows roughly linearly with the size of the input.

0.1

—e—Computer CPU
—=—Hardware FPGA

o©
o
Jo5)

Seconds
I3
o
o

o
o
X

0.02r /

POO 200 300 400 500 600
Image size in pixels

Fig. 7. Time required to compute the visual attention athamion a computer
processor (software) and on NeuFlow (hardware).

A
o

/board
seconds
> A
N »

N

w
©

seconds

Ratio: cpu

3. L L L L
fOO 200 300 400 500 600
Image size in pixels

Fig. 8. Speedup of hardware implementation as ratio betwéemFlow

(hardware) and computer processor (software) implemengimeasured in

seconds.

o The speed up resulting from the hardware acceleration_s

and found multiple points of attentiofx g (f), v (f)). This

point corresponds to the global maximum of the saliency map.
In the dataset, for each human observeaind each frame

f the location(z,,(f), y.(f)) of the eye fixation is provided.

We introduce the distanc (f), defined by equatiof12.

du(f) =V (@u(f) =25 ()2 + Wu(f) —yu(f)? (12)

This quantity measures the discrepancy between the locatio
of the point the observer looked at and the point correspandi
to the maximum of the saliency map (as returned by the
algorithm). In addition, we introduce the distanég,,(f),
defined by equatiof13.

In other wordsg,,;,, (f) is the minimal distancé{12), where
is minimum is taken over all the human observers looking at
the framef. The sample mean and standard deviations of the
quantitiesd,, andd,,.;,, are displayed in tablds Il afil I, where
the distance data is expressed as percentage of the image siz

[video | Ipt mean| std [3 pts mean| std | 10 pts mean] std |

1 0.22 0.18 0.15 0.15 0.08 0.1

2 0.19 0.16 0.15 0.15 0.11 0.14

3 0.28 0.15 0.19 0.12 0.12 0.09

4 0.34 0.18 0.25 0.17 0.18 0.15

5 0.35 0.17 0.22 0.11 0.13 0.07

6 0.41 0.22 0.25 0.17 0.14 0.12
TABLE |

BEST SUBJECT MATCH FOR THE ENTIRE VIDEO SEQUENGEOMPARING
FIXATION POINTS OF HUMAN SUBJECTS TAL,3,10LOCATIONS RETURNED
BY THE ATTENTION ALGORITHM. DISTANCE DATA IS EXPRESSED AS
PERCENTAGE OF THE IMAGE SIZE

always between 3 and 4.5, for images of sizes betwegideo | Ipt mean] std | 3 pts mean] std | 10 pts mean[std]

160 x 160 and 504 x 504.

o The speed up grows as the input size increases. This
is due to the following characteristics of the hardware.
First, for small images the system does not utilize t
bandwidth fully (“starving”). Second, the computation
time involves the reconfiguration time, which is constant
for all image sizes and is negligible for large images a

noticeable for small images.

1 0.13 0.11 0.07 0.08 0.04 0.06

2 0.13 0.14 0.1 0.13 0.08 0.12

3 0.19 0.14 0.13 0.12 0.07 0.08

4 0.21 0.14 0.14 0.11 0.09 0.08

e 5 0.26 0.16 0.16 0.1 0.09 0.06

6 0.25 0.16 0.13 0.1 0.05 0.05
TABLE Il

r-ngST SUBJECT MATCH PER FRAME OF THE VIDEO SEQUENGEOMPARING

FIXATION POINTS OF HUMAN SUBJECTS TdL,3,10LOCATIONS RETURNED

In the second experiment, we validate our implementation gy 114e ATTENTION ALGORITHM. DISTANGE DATA IS EXPRESSED AS
by running the code on the data set of human eye-tracking, PERCENTAGE OF THE IMAGE SIZE
freely available online (see [9]). This data set containzega
locations from eight human observers watching 50 different
video clips ¢ 25 minutes of total playtime). The eye move- Considering the best subject match per video in thble 11, by
ment recordings were performed using ISCAN RK-464 eyesing 1 point computed in hardware, the average normalized
tracker [10], [11]. We processed six videos, each seen Histance is 30% or withink 1/3 the size of the image. By

six human observers, with frame size &4 x 504, each

using 3 points, it is 20% or within 1/5 the size of the image,

of 10 seconds and at 30 fps for a total of 300 framemnd by using 10 points, it is 13% or within 1/8 the size of the
processed. For each franfe we computed the saliency mapimage. Considering the best subject per each frame, by using

1 point the average normalized distance is 20% or within 1ased on [1]. To accelerate the computations, we used our
the size of the image, by using 2 points it is 12% or withigustom hardware system NeuFlow [7], [8], [6]. This FPGA-
1/8 the size of the image, by using 10 points it is 7% or withihased system was developed with the purpose to accelerate
1/14 the size of the image. computations in various vision tasks.

Since computing multiple points does not slow down our We report on several experiments, which indicate that the
hardware implementation of the attention algorithm, amdesi hardware-accelerated implementation yields a speed-up be
it takes into account subject variability, we conclude that tween 3 and 4.5 compared to software. The speed-up increases
results are close to human bottom-up attention, and witkén tand scales linearly with the size of the input image. This
range of published results [10], [11]. suggests that implementing the same hardware system on
ASIC will lead to even more significant speed-up, especially
for large images.

In addition, we validate the results of our implementation
by comparing it to the dataset of human eye fixations on
different videos, available online at [9]. We conclude that
our implementation of the attention algorithm yields résul
that agree with the empirical human attention data up to a
reasonable error.

Fig. 9. From left to right: five points of visual attention denined by our ACKNOWLEDGMENT
implementation, five points of eye fixation as recorded by-tegeker [9], . .
saliency map computed on NeuFlow. This work was partially supported by NSF grant ECCS-

0901742, by ONR MURI BAA 09-019, DARPA NeoVision2

In Figure[®, we illustrate the computation of the salienchrogram BA 09-58.
map and the points of visual attention. On the left, we digpla
a frame from one of the videos in the dataset. On top of it

. 1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-bakeisual atten-
we p|0t in red five points of attention as determined by OUI[' tion for rapid scene analysisPattern Analysis and Machine Intelligence,

implementation of the algorithm. In the center, we display IEEE Transactions onvol. 20, no. 11, pp. 12541259, 2002.
the same frame with the locations of eye fixation of fivel2] J. Tsotsos, S. Culhane, W. Kei Wai, Y. Lai, N. Davis, andNflo,

different observers, as provided in the dataset. On the, nig V'\éll(_)(i%“n,?oylijzal ;‘;fes”(‘)'?l-,ﬁ'é‘ i%'g?_'ve tuningirtficial intefligence

display the saliency map, computed on our hardware systeg) L. Itti and C. Koch, “Computational modelling of visualttention,”
(corresponding to the same frame). Nature Reviews Neuroscienceol. 2, no. 3, pp. 194-203, 2001.
[4] B. Olshausen, C. Anderson, and D. Van Essen, “A neurobiokl model
of visual attention and invariant pattern recognition loase dynamic
0.25—=<%— i i i routing of information,” Journal of Neurosciengevol. 13, no. 11, p.
4700, 1993.
[5] R. Milanese, S. Gil, and T. Pun, “Attentive mechanisms diynamic
and static scene analysis (Journal Pap&ptical Engineeringvol. 34,
no. 08, pp. 2428-2434, 1995.
[6] N. dataflow computer site, “Url http://www.neuflow.ctg.
[7] C. Farabet, Y. LeCun, K. Kavukcuoglu, B. Martini, P. Aksel, S. Talay,
0.15+ J and E. Culurciello,Scaling Up Machine Learning: Large-Scale FPGA-
Based Convolutional Networks Cambridge University Press, 2010,
edited by Ron Bekkerman, Misha Bilenko, and John Langford.
[8] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCumdaE. Cu-
0.1+ 1 lurciello, “Hardware accelerated convolutional neuraiwaeks for syn-
thetic vision systems,” ilEEE International Symposium on Circuits and
Systems, ISCAS '10 Paris, France: IEEE, May 2010.
[9] C. E. tracking data, “Url https://crcns.org/data-¢eye/eye-1."
0.05o > 4 6 8 10 [10] L. Itti, “Automatic foveation for video compressioning a neurobiolog-
Number of attention points ical model of visual attentionJEEE Transactions on Image Processing
vol. 13, no. 10, pp. 1304-1318, Oct 2004.

))) L) [11]] ——, “Quantitative modeling of perceptual salience aintan eye
Fig. 10. Normalized distance of human fixation points vs thenber of position,” Visual Cognition vol. 14, no. 4-8, pp. 959-984, Aug-Dec
locations returned by the attention algorithm, for the Imsgiject match per 2006.

frame on one video sequence.

REFERENCES

Normalized distance

In Figure[ID we show an example of how a higher number
of saliency points computed by our hardware can, at the,limit
emulate human fixation points,,;,, (f).

VI. SUMMARY

In this paper, we presented a hardware-accelerated imple-
mentation of a visual attention algorithm. The algorithm is

	Introduction
	Algorithm
	Hardware
	Implementation
	Results
	Summary
	References

