
Hardware Accelerated Visual Attention Algorithm
Polina Akselrod1, Faye Zhao1, Ifigeneia Derekli1, Clément Farabet1,2, Berin Martini1

Yann LeCun2 and Eugenio Culurciello1
1 Electrical Engineering Department, Yale University, New Haven, USA

2 The Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, USA

Abstract— We present a hardware-accelerated implementation
of a bottom-up visual attention algorithm. This algorithm gen-
erates a multi-scale saliency map from differences in image
intensity, color, presence of edges and presence of motion.The
visual attention algorithm is computed on a custom-designed
FPGA-based dataflow computer for general-purpose state-of-the-
art vision algorithms. The vision algorithm is acceleratedby our
hardware platform and reports ×4 speedup when compared to
a standard laptop with a 2.26 GHz Intel Dual Core processor
and for image sizes of480 × 480 pixels. We developed a real
time demo application capable of> 12 frames per second with
the same size images. We also compared the results of the
hardware implementation of the algorithm to the eye fixation
points of different subjects on six video sequences. We find that
our implementation achieves precisions of fixation predictions of
up to 1/14th of the size of time video frames.

I. I NTRODUCTION

Visual attention algorithm have been a subject of intense
research for many years. Several models of visual attention
have been proposed to identify image location of interest and
saliency, and to model the way human observers move their
eyes in response to bottom-up features in the image [1], [2],
[3], [4], [5]. Visual attention is used not only to predict the
visual attractiveness of locations in an image, but also to guide
vision towards target objects of interest. It is also used in
psychophysics experiments with complex stimuli in an effort
to understand the human visual system However, computing
attention algorithms is computationally intense. This issue
becomes critical in real-time applications dealing with large-
scale images.

In this paper, we describe a hardware-accelerated imple-
mentation of a visual attention algorithm, based on the model
described in”A model of saliency-based visual attention for
rapid scene analysis”by L. Itti, Ch. Koch & E. Niebur [1].
The core computations of the algorithm are performed on our
custom-designed hardware namedNeuFlow [6]. This system
was developed with the purpose of accelerating general-
purpose vision algorithms [7], [8]. The use of hardware
allowed us to run the algorithm in a real-time application at
over 12 frames per second for images of size480 × 480.

This paper has the following organizartion: in Section II,
we describe the visual attention model on which we base our
implementation. In Section III, we briefly discuss the NeuFlow
hardware system, that we used to accelerate the algorithm. In
Section IV, we describe the implementation details as well
as several modifications of the original model that we have
introduced. In Section V, we report on several experiments that

aim at validating the performance and evaluating the running
time. Section VI concludes the paper.

II. A LGORITHM

The vision algorithm we used in this paper is based on
the model, described in [1]. The goal of the algorithm is to
locate the points of visual attention in the input RGB image (or
video). For this purpose, several feature maps are computed.
These maps indicate differences in intensity and color, and
report edges and motion in the scene. The linear combination
of the feature maps yields the saliency map. To detect fine as
well as coarse details of the input image, a pyramid of scalesis
used. Different scales are obtained by subsampling the maps.
The final saliency map is a linear combination of interpolations
of intermediate saliency maps on different scales. The maxima
of the saliency map are defined to be the principal points of
visual attention.

Due to our custom hardware, we have introduced a few
modifications (see Section IV for more details). Below we
describe the algorithm that we used to calculate all the feature
maps and the saliency map. Suppose thatA is the input image
with 3 color channels, denoted byR, G, B. The intensity
feature mapI is defined by equation 1.

I = 0.299 · R + 0.587 · G + 0.114 · B (1)

In other words, intensity is a weighted average of the
three channels. To detect the difference in color, we define
two feature mapsRG (red-green) andBY (blue-yellow) by
equation 2, 3.

RG =
R − G

I
(2)

BY =
B − (R + G)/2

I
(3)

The edges feature mapE is computed by convolving the
intensity mapI with the 3 × 3 Laplacian kernel (Ker) , as in
equation 4.

E = I ∗ Ker; withKer =

0 −1 0
−1 4 −1
0 −1 0

 (4)

The motion is detected by calculating the temporal differ-
enceTD between the intensities of two consecutive framesI1

and I2 of the video input. In other words,TD is defined by
equation 5.

TD = I2 − I1 (5)

The saliency map is defined bySAL1 in equation 6.SAL1

is a weighted average of the feature mapsTD, E, RG, BY
andI.

SAL1 = 0.6 · TD + 0.3 · E + 0.1 · (I + RG + BY) (6)

To compute ak-scaled mapSk of the input imageS, we
subsample the image in the following way. Suppose thatS
is ann × n image. We subdivide it intok × k squares. Each
entry ofSk is the average of the corresponding square. In other
words,Sk is an (n/k) × (n/k) image, whose(i, j)−entry is
defined by equation 7, wherei, j = 0, 1, . . . (n/k) − 1.

Sk(i, j) =
1

k2

k−1
∑

l=0

k−1
∑

r=0

S(k · i + l, k · j + r) (7)

The saliency maps corresponding to different scales are
linearly combined to yield the final saliency map, as explained
in details in Section IV.

III. H ARDWARE

The vision algorithms are accelerated by a data-flow com-
puter architecture NeuFlow. The hardware was designed to
perform computations typical to various vision tasks (see
”Bio-Inspired Vision Processor for Ultra-Fast Object Cate-
gorization” by C. Farabet et al. [7] for more details). In this
section, we give a short description of the hardware we use.
A more detailed description can be found in [7], [8], [6].

In our implementation of the visual attention algorithm, as
explained in Section II, the computations are accelerated by the
custom hardware (here add reference to the chapter). NeuFlow
(see [6]) runs on a commercial Xilinx ML605 FPGA board
(XC6VLX240T device). Communication between the FPGA
board and the host computer is performed via Gigabit Ethernet.
NeuFlow, pictured in Figure 1, is first configured to perform
a certain set of computations, then the data is streamed in and
finally the result is routed back to the memory. The architec-
ture is parametrizable and reconfigurable at runtime, consisting
of a computational grid, a DMA interface to memory, and a
custom processor serving as controller of the system.

The compute grid consists of processing tiles. Each tile
can be configured to perform a simple arithmetic operation, a
2D convolution, piecewise linear approximation of a function
etc. The tiles are connected to local data lines, and a routing
multiplexer connects the local data lines to global data lines or
to neighboring tiles. Convolution is one of the operations that
are best accelerated, as each datum (pixel) can be used for up
to K×K parallel operations—when convolving with aK×K
kernel. NeuFlow has been able to instantiate (and sustain) up
to four 10×10 2D convolvers, or six9×9 convolvers (on the
XC6VLX240T FPGA).

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

∑π %

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

Control

 & Config

Smart DMA

Configurable Route Global Data Lines Runtime Config Bus

Off-chip

Memory

Mem∑π Mem∑π Mem

∑π Mem ∑π Mem

∑π Mem∑π Mem

∑π Mem

∑π Mem

A Runtime Reconfigurable Dataflow Architecture

PT PT PT

PTPTPT

PT PT PT

Fig. 1. A data-flow computer. A set of runtime configurable processing tiles
are connected on a 2D grid. They can exchange data with their 4neighbors
and with an off-chip memory via global lines.

IV. I MPLEMENTATION

In this section, we provide technical detail on the imple-
mentation of the visual attention algorithm of Section II using
the hardware, described in Section III. In addition, we describe
several modifications we have introduced to the algorithm in
order to accelerate its performance in our hardware platform
NeuFlow.

The implementation of the attention algorithm requires such
operations as multiplication of a matrix by a scalar, addition
and subtraction of several matrices, entry-wise division of one
matrix by another, and subsampling (see equations (1), (2),(3),
(5), (6), (7)). Basic arithmetical operations on the NeuFlow
hardware are sequential [7]. For example, if we want the
hardware to add two matrices, only two entries will be added
up at one cycle. The NeuFlow system runs at 200 MHz, while
the frequency of the standard processor of a modern desktop or
laptop computer is more than 2 GHz. Therefore, performance
of sequential operations on NeuFlow does not offer any speed
up.

On the other hand, NeuFlow carries out convolutions in
the parallel manner [7], therefore convolutions on NeuFlow
are computed significantly faster than on a standard computer
processor. Therefore to accelerate computations via hardware,
we need to represent them as convolutions. Below we describe
the types of convolutions NeuFlow is able to perform.

We recall that the convolution of ann × n input matrixA
with a k × k kernel matrix K is an(n− k + 1)× (n− k + 1)
output matrixB, whose elements are computed by equation
8.

B(i, j) =

k−1
∑

l=0

k−1
∑

r=0

A(i + l, j + r) · K(l, r) (8)

where i, j = 0, . . . , n − k. NeuFlow allows the user

to perform several convolutions at once. Depending on the
number of inputs, kernels and outputs, we distinguish between
several cases.

In the first case, there is one input matrixI1, m kernels
K1, . . . , Km and m outputs O1, . . . , Om, as described in
Figure 2.

O1 = I1 ∗ K1,

. . .

Om = I1 ∗ Km.

IN1

O1

O2

O3

k1

k2

k3

Fig. 2. First type of convolution:#inputs == 1 and #inputs ×

#outputs == #kernels.

In the second case, there arem inputsI1, . . . , Im, m kernels
K1, . . . , Km and m outputs O1, . . . , Om , as described in
Figure 3.

O1 = I1 ∗ K1,

. . .

Om = Im ∗ Km.

IN1

IN2

IN3

O1

O2

O3

k1

k2

k3

Fig. 3. Second type of convolution:#inputs == #outputs and
#inputs×#outputs == #kernels.

In the third case the number of kernels equals the product
of the number of inputs and the number of outputs. As
opposed to the two previous cases, each output is obtained
by accumulation of the convolutions of all the inputs with the
corresponding kernels. This is exemplified on Figure 4. In the
settings described by this figure, the outputsO1 and O2 are
computed by:

O1 = I1 ∗ K1 + I2 ∗ K2 + I3 ∗ K3

O2 = I1 ∗ K4 + I2 ∗ K5 + I3 ∗ K6

The formula (1) for the intensityI is evaluated via NeuFlow
as the convolution of the third type. In other words, the three
channelsR, G, B are convolved with three1× 1 kernels, and
the results are accumulated intoI. (2), (3) and (5) (forRG,
BY andTD, respectively) are evaluated with convolution of
the third type in a similar way, with the difference that the

IN1

IN2

IN3

O1

O2

k1

k2

k3

k4

k5

k6

Fig. 4. Third type of convolution:#inputs > 1 and #inputs ×

#outputs == #kernels.

division is implemented in the sequential manner. The formula
(4) for the edges feature mapE is already a convolution per-
formed with a convolution of the second type. Thek−scaled
map Sk (defined via (7)) can be viewed as the subsampled
type one convolution ofS with the kernel in equation 9.

Subk =
1

k2

1 · · · 1
...

. . .
...

1 · · · 1

(9)

By subsampling we mean that instead of (8) a slightly
modified equation 10.

B(i, j) =

k−1
∑

l=0

k−1
∑

r=0

A(k · i + l, k · j + r) · K(l, r), (10)

is used, wherei, j = 0, . . . , (n/k)− 1. For example, in (7)
with k = 2

S2(0, 0) =

(

S(0, 0) S(0, 1)
S(1, 0) S(1, 1)

)

∗

(

1/4 1/4
1/4 1/4

)

(11)

and the rest of the entries ofS2 are evaluated in a similar
fashion.

On the final stage of the algorithm, the saliency maps on
four different scales (k = 1, 2, 4, 8) are combined into the
final saliency map by interpolation and averaging. We use
convolution of the third type for this operation. However, in
our implementation we replace interpolation by subsampling.

We conclude this section with an explicit list of the steps
of our version of the visual attention algorithm.

• Receive onen × n image with 3 channelsR, G, B.
• Compute then×n mapsI, RG, BY, TD via the formulae

(1), (2), (3), (5), respectively.TD is computed only if the
input is a video, and not a single image.

• Subsample at the scalesk = 2, 4, 8 to obtain the maps
Ik, RGk, BYk, TDk (by using the formula (7)).

• Compute the edges mapsE, E2, E4, E8 on four different
scales with eq. (4). For example,E2 = I2 ∗ Ker is a
(n/2) × (n/2) map.

• Compute the saliency mapsSAL1, SAL2, SAL4, SAL8

on four different scales with eq. (6).
• SubsampleSAL1, SAL2, SAL4 to reduce their size to

(n/8) × (n/8). In other words,SAL1 is subsampled at
the scale8, SAL2 is subsampled at the scale4 andSAL4

is subsampled at the scale2 (see (7)).

• Average the four subsampled saliency maps into the final
(n/8) × (n/8) saliency mapSAL. In other words:

SAL =
(SAL1)8 + (SAL2)4 + (SAL4)2 + SAL8

4

The saliency mapSAL is used to locate the regions of
visual attention. In our implementation, given the requested
numberM of the regions of attention and their sizeS, we
subdivideSAL into equal squares of sizeS × S. In each
square,SAL attains a maximum. Among these(n/(8S))2

maxima, we findM largest values. The corresponding squares
are declared to be the regions of attention (ordered according
to the corresponding maximal values). We use a heap of size
M to find these maxima.

V. RESULTS

In this section, we illustrate our implementation of the visual
attention algorithm via several experiments. In particular, we
compare two implementations of the algorithm. In the first
implementation, all the computations are performed on the
host computer in software. In the second implementation, the
core computations are carried out on our hardware NeuFlow
system. All the experiments were carried out on a standard
modern laptop computer, with a 2.26 GHz Intel Dual Core
processor and 4 GB of RAM. The software version of the
algorithm was implemented in C, with API developed in the
high-level Lua language running on a single thread.

100 200 300 400 500 600
5

10

15

20

25

30

35

40

Image size in pixels

F
ra

m
e

pe
r

se
co

nd

Computer CPU
Hardware FPGA

Fig. 5. Frames per second of the visual attention algorithm implemented on
a computer processor (software) and on NeuFlow (hardware).

The NeuFlow hardware version of the algorithm consists of
several modules. The images are sent from the host computer
to NeuFlow, while the saliency mapSAL is computed on the
hardware and sent back to the host computer. The communi-
cation modules and API are implemented in C and Lua for
Gigabit Ethernet. To locate the regions of visual attention, the
saliency map is processed on the host computer. Note that
only part of the computations are performed on hardware, and
additional time is spent on the communication between the

host computer and the FPGA board. Nevertheless, the use of
the NeuFlow system leads to a noticeable acceleration.

In the first experiment, we run both software and hardware
versions of the algorithm on RGB images of sizen × n for
several values ofn, in order to evaluate running times. One
region of attention of size 1 is located (the position of the
global maximum in the saliency mapSAL).

100 200 300 400 500 600
1.3

1.4

1.5

1.6

1.7

1.8

Image size in pixels

R
at

io
: b

oa
rd

fp
s/c

pu
fp

s

Fig. 6. Speedup of hardware implementation as ratio betweenNeuFlow
(hardware) and computer processor (software) implementations measured in
frames per seconds [fps].

In Figure 5, we plot the reciprocal of the running time (in
frames per seconds) as a function of the image height/width
n. The dots correspond to the hardware version (using FPGA-
based NeuFlow). The circles correspond to the software ver-
sion. The hardware reports up to 12 fps for a 500× 500 image.
In addition, in Figure 6 we plot the ratio of the software vs
hardware running time’.

We note that in Figures 5, 6 the running time includes
capture of the images by the camera, resizing, sending the
image to the FPGA (in case of the hardware version), evalu-
ation of the saliency map, search for the regions of attention
and display of the result (as an image with marked regions
of attention). In other words, this running time refers to a
realtime demo application that we have developed to test and
demonstrate the algorithm.

On the other hand, we can compare the running time of the
evaluation ofSAL only. In other words, this is the time spent
from the beginning of the evaluation of the feature maps till
the end of the evaluation of the saliency map. In Figure 7, we
plot this running time in seconds, as a function of the image
height/widthn. The dots correspond to the hardware version.
The circles correspond to the software version. In Figure 8,
we plot the ratio of the two.

Several observations can be made from Figures 7 and 8.

• The running time of the software version (computations
only) grows roughly quadratically with the size of the
input, as expected.

• The running time of the hardware version, on the other
hand, grows roughly linearly with the size of the input.

100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

Image size in pixels

S
ec

on
ds

Computer CPU
Hardware FPGA

Fig. 7. Time required to compute the visual attention algorithm on a computer
processor (software) and on NeuFlow (hardware).

100 200 300 400 500 600
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Image size in pixels

R
at

io
: c

pu
se

co
nd

s/b
oa

rd
se

co
nd

s

Fig. 8. Speedup of hardware implementation as ratio betweenNeuFlow
(hardware) and computer processor (software) implementations measured in
seconds.

• The speed up resulting from the hardware acceleration is
always between 3 and 4.5, for images of sizes between
160 × 160 and504 × 504.

• The speed up grows as the input size increases. This
is due to the following characteristics of the hardware.
First, for small images the system does not utilize the
bandwidth fully (“starving”). Second, the computation
time involves the reconfiguration time, which is constant
for all image sizes and is negligible for large images and
noticeable for small images.

In the second experiment, we validate our implementation
by running the code on the data set of human eye-tracking,
freely available online (see [9]). This data set contains gaze
locations from eight human observers watching 50 different
video clips (∼ 25 minutes of total playtime). The eye move-
ment recordings were performed using ISCAN RK-464 eye-
tracker [10], [11]. We processed six videos, each seen by
six human observers, with frame size of504 × 504, each
of 10 seconds and at 30 fps for a total of 300 frames
processed. For each framef , we computed the saliency map

and found multiple points of attention(xH(f), yH(f)). This
point corresponds to the global maximum of the saliency map.

In the dataset, for each human observeru and each frame
f the location(xu(f), yu(f)) of the eye fixation is provided.
We introduce the distancedi(f), defined by equation 12.

du(f) =
√

(xu(f) − xH(f))2 + (yu(f) − yH(f))2 (12)

This quantity measures the discrepancy between the location
of the point the observer looked at and the point corresponding
to the maximum of the saliency map (as returned by the
algorithm). In addition, we introduce the distancedmin(f),
defined by equation 13.

dmin(f) = min
u

{du(f)} (13)

In other words,dmin(f) is the minimal distance (12), where
is minimum is taken over all the human observers looking at
the framef . The sample mean and standard deviations of the
quantitiesdu anddmin are displayed in tables II and I, where
the distance data is expressed as percentage of the image size.

video 1pt mean std 3 pts mean std 10 pts mean std

1 0.22 0.18 0.15 0.15 0.08 0.1
2 0.19 0.16 0.15 0.15 0.11 0.14
3 0.28 0.15 0.19 0.12 0.12 0.09
4 0.34 0.18 0.25 0.17 0.18 0.15
5 0.35 0.17 0.22 0.11 0.13 0.07
6 0.41 0.22 0.25 0.17 0.14 0.12

TABLE I

BEST SUBJECT MATCH FOR THE ENTIRE VIDEO SEQUENCE, COMPARING

FIXATION POINTS OF HUMAN SUBJECTS TO1,3,10LOCATIONS RETURNED

BY THE ATTENTION ALGORITHM . DISTANCE DATA IS EXPRESSED AS

PERCENTAGE OF THE IMAGE SIZE.

video 1pt mean std 3 pts mean std 10 pts mean std

1 0.13 0.11 0.07 0.08 0.04 0.06
2 0.13 0.14 0.1 0.13 0.08 0.12
3 0.19 0.14 0.13 0.12 0.07 0.08
4 0.21 0.14 0.14 0.11 0.09 0.08
5 0.26 0.16 0.16 0.1 0.09 0.06
6 0.25 0.16 0.13 0.1 0.05 0.05

TABLE II

BEST SUBJECT MATCH PER FRAME OF THE VIDEO SEQUENCE, COMPARING

FIXATION POINTS OF HUMAN SUBJECTS TO1,3,10LOCATIONS RETURNED

BY THE ATTENTION ALGORITHM . DISTANCE DATA IS EXPRESSED AS

PERCENTAGE OF THE IMAGE SIZE.

Considering the best subject match per video in table II, by
using 1 point computed in hardware, the average normalized
distance is 30% or within< 1/3 the size of the image. By
using 3 points, it is 20% or within 1/5 the size of the image,
and by using 10 points, it is 13% or within 1/8 the size of the
image. Considering the best subject per each frame, by using

1 point the average normalized distance is 20% or within 1/5
the size of the image, by using 2 points it is 12% or within
1/8 the size of the image, by using 10 points it is 7% or within
1/14 the size of the image.

Since computing multiple points does not slow down our
hardware implementation of the attention algorithm, and since
it takes into account subject variability, we conclude thatour
results are close to human bottom-up attention, and within the
range of published results [10], [11].

Fig. 9. From left to right: five points of visual attention determined by our
implementation, five points of eye fixation as recorded by eye-tracker [9],
saliency map computed on NeuFlow.

In Figure 9, we illustrate the computation of the saliency
map and the points of visual attention. On the left, we display
a frame from one of the videos in the dataset. On top of it,
we plot in red five points of attention as determined by our
implementation of the algorithm. In the center, we display
the same frame with the locations of eye fixation of five
different observers, as provided in the dataset. On the right, we
display the saliency map, computed on our hardware system
(corresponding to the same frame).

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

Number of attention points

N
or

m
al

iz
ed

 d
is

ta
nc

e

Fig. 10. Normalized distance of human fixation points vs the number of
locations returned by the attention algorithm, for the bestsubject match per
frame on one video sequence.

In Figure 10 we show an example of how a higher number
of saliency points computed by our hardware can, at the limit,
emulate human fixation pointsdmin(f).

VI. SUMMARY

In this paper, we presented a hardware-accelerated imple-
mentation of a visual attention algorithm. The algorithm is

based on [1]. To accelerate the computations, we used our
custom hardware system NeuFlow [7], [8], [6]. This FPGA-
based system was developed with the purpose to accelerate
computations in various vision tasks.

We report on several experiments, which indicate that the
hardware-accelerated implementation yields a speed-up be-
tween 3 and 4.5 compared to software. The speed-up increases
and scales linearly with the size of the input image. This
suggests that implementing the same hardware system on
ASIC will lead to even more significant speed-up, especially
for large images.

In addition, we validate the results of our implementation
by comparing it to the dataset of human eye fixations on
different videos, available online at [9]. We conclude that
our implementation of the attention algorithm yields results
that agree with the empirical human attention data up to a
reasonable error.

ACKNOWLEDGMENT

This work was partially supported by NSF grant ECCS-
0901742, by ONR MURI BAA 09-019, DARPA NeoVision2
program BA 09-58.

REFERENCES

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual atten-
tion for rapid scene analysis,”Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 20, no. 11, pp. 1254–1259, 2002.

[2] J. Tsotsos, S. Culhane, W. Kei Wai, Y. Lai, N. Davis, and F.Nuflo,
“Modeling visual attention via selective tuning,”Artificial intelligence,
vol. 78, no. 1-2, pp. 507–545, 1995.

[3] L. Itti and C. Koch, “Computational modelling of visual attention,”
Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001.

[4] B. Olshausen, C. Anderson, and D. Van Essen, “A neurobiological model
of visual attention and invariant pattern recognition based on dynamic
routing of information,” Journal of Neuroscience, vol. 13, no. 11, p.
4700, 1993.

[5] R. Milanese, S. Gil, and T. Pun, “Attentive mechanisms for dynamic
and static scene analysis (Journal Paper),”Optical Engineering, vol. 34,
no. 08, pp. 2428–2434, 1995.

[6] N. dataflow computer site, “Url http://www.neuflow.org.”
[7] C. Farabet, Y. LeCun, K. Kavukcuoglu, B. Martini, P. Akselrod, S. Talay,

and E. Culurciello,Scaling Up Machine Learning: Large-Scale FPGA-
Based Convolutional Networks. Cambridge University Press, 2010,
edited by Ron Bekkerman, Misha Bilenko, and John Langford.

[8] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Cu-
lurciello, “Hardware accelerated convolutional neural networks for syn-
thetic vision systems,” inIEEE International Symposium on Circuits and
Systems, ISCAS ’10. Paris, France: IEEE, May 2010.

[9] C. E. tracking data, “Url https://crcns.org/data-sets/eye/eye-1.”
[10] L. Itti, “Automatic foveation for video compression using a neurobiolog-

ical model of visual attention,”IEEE Transactions on Image Processing,
vol. 13, no. 10, pp. 1304–1318, Oct 2004.

[11] ——, “Quantitative modeling of perceptual salience at human eye
position,” Visual Cognition, vol. 14, no. 4-8, pp. 959–984, Aug-Dec
2006.

	Introduction
	Algorithm
	Hardware
	Implementation
	Results
	Summary
	References

