Audio-Visual Saliency Map: Overview, Basic
Models and Hardware Implementation

Sudarshan Ramenahatli, Daniel R. Mendat, Salvador Dura-Bern&l Eugenio Culurciell§,
Ernst Niebutl and Andreas Andredti
*Department of Electrical and Computer Engineering, Johogkiths University, Baltimore, MD
fKrieger Mind/Brain Institute, Johns Hopkins UniversityalBmore, MD
iCenter for Language and Speech Processing, Johns Hopkimersity, Baltimore, MD
§University of Cyprus
YWeldon School of Biomedical Engineering, Purdue Univgraivest Lafayette, IN
||Department of Neuroscience, Johns Hopkins UniversitytiBare, MD

Abstract—In this paper we provide an overview of audio- analyze real world perceptual scenes. We limit our focusto t
visual saliency map models. In the simplest model, the location important sensory systems: the visual and auditory systems
of auditory source is modeled as a Gaussian and use different o, o is divided into two parts, one being computational
methods of combining the auditory and visual information. We e . . .
then provide experimental results with applications of simple yenﬁcgtlon and the other bemg hardwa}re |mpI.ementat|oe. W
audio-visual integration models for cognitive scene analysis. We investigate the nature of multisensory interaction betwthe
validate the simple audio-visual saliency models with a hardware auditory and visual domains. More specifically, we consider
convolutional network architecture and real data recorded from  the effect of a spatially co-occurring auditory stimulus the
moving audio-visual objects. The latter system was developed g5jiance of an inconspicuous visual target at the sameaspati
under Torch language by extending the attention.lua (code) location among other visual distractors. Temporal corenay
and attention.ui (GUI) files that implement Culurciello’s visual | ; > .
attention model. is assumed between visual and auditory events. The motiva-

tion for this work is that audio-visual integration is highl
. INTRODUCTION effective when cue reliability is highly degraded in respeaxc

Scientists and engineers have traditionally separated th@dsensory modalities. In such a scenario it is beneficial to
analysis of a multisensory scene into its constituent sgnsantegrate information from both sensory modalities in orbe
domains. In this approach, for example, all auditory evenitgrness the advantages of each. Neurological studies2[7], [
are processed separately and independently of visual g8Hhave shown that audio-visual integration elicits a sape
somatosensory streams even though the same multisengbtiye response when stimuli in individual modalities am@t n
event may give rise to those constituent streams. It wasfficiently reliable. Results from a hardware implemedntat
previously necessary to compartmentalize the analysisusec of the model are also considered.
of the sheer enormity of information as well as the limita-
tions of experimental techniques and computational ressur
With recent advances in science and technology, it is nowThere is a considerable amount of prior research on mul-
possible to perform integrated analysis of sensory systetisensory processing, specifically audio-visual intégratin
including interactions within and across sensory modsiti psychology and neuroscience. For a detailed review of neu-
Such efforts are becoming increasingly common in cellulaoscience and psychophysics research related to audiatvis
neurophysiology, imaging and psychophysics studies Pf], [ interaction, please refer to [9], [10]. Here we review reska
A better understanding of interaction, information ingggon, in computational and engineering domains which so far is
and complementarity of information across senses may feelpvery limited. We specifically focus on different mechanisms
build many intelligent algorithms for object detectionjeti for combining auditory and visual saliency maps. In [11],
recognition, human activity and gait detection, surveit®, a one-dimensional computational neural model of saccadic
tracking, biometricstc, with better performance, stability andeye movement control by Superior Colliculus (SC) is in-
robustness to noise. For example, fusing auditory (voiog) avestigated. The model can generate three different types of
visual (face) features can help improve the performance sdiccades: visual, multimodal and planned. It takes intowtc
speaker identification and face recognition systems [3], [4 different coordinate transformations between retinatogid

There are several examples of highly successful neurombead-centered coordinate systems, and the model is able to
phic engineering systems [5], [6] that mimic the functiorlicit multimodal enhancement and depression that is &flyic
of individual sensory systems. However, the efforts have sbserved in SC neurons [12], [13]. However, the main focus
far been limited to modeling only individual sensory syssems on Superior Colliculus function rather than studying iaud
rather than the interaction between them. Our goal in thikwovisual interaction from a salience perspective. In [14],dtim
is to build computational models of multisensory proceg$étin modal bottom-up attentional system consisting of a contbine

Il. RELATED WORK



audio-visual salience map and selective attention meshmaisi Both the distractors and target are distinguishable froen th
implemented for the humanoid robot iCub. The visual sakenbackground, but identifying the target from the distrastis
map is computed from color, intensity, orientation and wwti a difficult task. If we rely on using the visual domain alone to
maps. The auditory salience map consists of the locatioheof focate the target, this search requires a considerable rarnobu
sound source. Both are registered in ego-centric coorBnatattention and thus serial processing to identify if eachlsyim
The audio-visual salience map is constructed by performimgthe target.

a pointwisemax operation on y|sual an(_j audltor_y maps. InB_ Auditory Stimuli

[15], after computing the audio and visual saliency maps, ] . ] o
each salient event/proto-object is parameterized by reagie 1he auditory space is modeled to be spatially coincident
value, cluster center (mean location), and covarianceixnatyVith the visual space covering the entire image. We simu-
(uncertainty in estimating location). The maps are linearlate the activation of one of the 8 speakers that are placed
combined based on [16]. Extensions of this approach can ggidistant to each other covering the visual space of ttigeen
found in [17]. Even though the models in [15], [14] applymdage. So, the auditory space is dlv!ded mtoSc_equaI setio
audio-visual salience in useful applications, they lackpic- f the visual target (*Y") is present in a specific section, a
ity and biological plausibility. In [18], audiovisual ays for _Gaussnan w!ndow with zero mean and un_lt variance is cen_tered
unthetered spoken interfaces are developed. The arraglizioc I that section to represent the approximate auditory $igna
the direction and distance of an auditory source from th@cation. Since auditory localization is generally lessqme
microphone array, visually localize the auditory sourceg athan. visual Iocal|zat|9n we center the envelope in a péeticu
then direct the microphone beamformer to track the speaki&ction of the map irrespective of the exact location of the
audio-visually. The method is robust to varying illumimati Visual target within that section. _
and reverberation, and the authors report increased speecUr model for the auditory signal also serves as an auditory
recognition accuracy using the AV array compared to nofalience map (ASM) because we take spatial location of sound

array based processing. stimglus to be th_e o_nly rel_evant feature. Hence, th_e_ASM
consists of an activation region if a sound stimulus oritgea
[1l. DATA AND METHODS from that location. The sound localization inaccuracy obse

The effectiveness of audio-visual integration in detegtin? Poth humans and primates is the motivation to model the
weakly visible visual target among many distractors is istid stimulus as a G_au33|an window (Eg. 1) situated at the latatio
by computing an audio-visual (AV) saliency map. The visudlf the sound stimulus:

stimuli (target and distractors) are deliberately madeelyar -z

distinguishable from each other. If the auditory stimulepk 1 6*5(“ To ) if 2 €Q,

identify the target the AV saliency map should reflect the Ax) = § over (@)

same result. The effectiveness of AV saliency with respect 0 otherwise

to its unimodal counterparts is studied for different stinsu

conditions. In Eq. 1,Q, represents the section in which the visual target
lies, x, is the width of the window equal to the length of

A. Misual Simuli the active section. The parameter= 2.5, reciprocal of the

The visual stimuli are rectangular imagess with a width ¢ftandard deviation controls the width of the window [19]eTh
1800 pixels and height of 150 pixels (Figure 1). A horizontavidth of the Gaussian roughly corresponds to an uncertainty
reference line guides the observer to possible locations iBfauditory stimulus location and the height correspond$i¢to
the target and distractors. The task is to identify a weakfgliability of the auditory cue.
v?sible tgrget sympol among a number of more conspicuogs A dio-Visual Saliency
visual distractors in the audio-visual scene. The targeds a We fi biect based sali 201 of
displayed as the letter Y’ and distractors are displayed ahs € Irst compute a protq-o ject base saience map[ Jo
the letter X' (Figure 1). The number of distractor®), is the visual scene to investigate the relative visual sadieofc
randomly chosen to be between 1 and 5 inclusive. Theref{9¢t an_d distractors. In the auc_litory domain,_ since stsu
alwaysonly one target in every stimulus image. Neither théocatlor) is the only feature con3|dereq, the s.t|mulus locat .
target nor distractors are allowed to lie within 10 pixelanfr map (Figure 3) also serves as the auditory saliency map which

the image boundaries to avoid unwanted artifacts from the already compute'd.l Th'e visual and auditory saliency maps
visual salience computation. Distractors are randomlgciet! are combined multiplicatively as:

without replacement from all possible spatial locationstioa

abscissa. Among the remaining locations, a target locasion S=fAeV 2
randomly chosen. Care is taken to avoid symbols flanking —(1+ ARV, 3)

too close to each other. The intensities of both target and
distractors are kept identical to avoid intensity-relagatience
differences. Salience differences in our stimuli are olesr

1 = - _
h = - I . 4
because of differences in shape of the symbols only. where 3(n(O) ) +n(C)) @



Fig. 1. Visual stimulus with target ('Y’) and distractors ()X The distractors are visually more conspicuous than targe

In Egs. 2 - 4,5 is the audio-visual salience may, is the Our results confirm the effectiveness of audio-visual
auditory salience map, anid is the proto-object based visualsalience when cues in unisensory modalities are weak,-there
salience map. The normalization operator is denotea(by, fore cannot elicit a strong response based on unisensory cue
and point-wise multiplication is denoted by the symlwol alone. The effectiveness of multisensory integration is in
Color, orientation and intensity conspicuity maps are desho versely related to effectiveness of unimodal cues [8]. &ime
by C, O and I, respectively. For more details of visual protoobserve increased multisensory salience for the weakilgleis
object based saliency computation, please refer to [20]. Barget, our model exhibits a form of inverse effectiveness
combining the auditory and visual saliency maps as shownas reported in previous studies [2]. However, the resulés ar
Eq. 4, we retain all salient visual stimuli and also enhangeeliminary and more testing with different cue relialyilit
the salience of only those visual stimuli that have a spstialconditions is needed to confirm this.

co-occurring salient event in the auditory domain. Our model can be advantageous compared to that of [14]
because the latter model only highlights salient regioosfr
D. Hardware Implementation individual domains. For example, in a scenario where there

are three types of events (unimodal auditory, unimodalalisu
and bimodal audiovisual), the audiovisual event should be

The results of the computational modeling and hardwafeore salient than the unimodal events. However, the model

implementation are presented in Sections IV-A and IV-Bm [14] may not account for this. On the other hand, our
respectively. model assigns higher salience to bimodal events as compared

to unimodal ones. Our model also agrees with previous studie
[16], [21] where lateralized auditory stimulation was fauto
topographically increase the salience of the visual fielde T

In this part, results and discussion regarding the effemodel favorably compares with some other experiments where
tiveness of audio-visual integration from a purely computatimulus conditions are slightly different, but visual pesse
tional perspective are provided. The visual proto-objedal enhancement was observed. In [22], a sudden sound, spatiall
salience map is computed with default parameters listed goincident with asubsequently occurring visual stimulus was
[20]. In the visual domain (Figure 2) we see that distractofeund to improve the detectability of the flash. Our model
are more salient than the target. This salience result @aplishows evidence for their main conclusion that involuntary a
that an observer is more likely to shift his or her attentiothie tention to spatially registered sound enhances visuabresp
distractors than to the target. In such a scenario, idengifthe In [23] event related potentials were recorded in an audio-
target requires an elaborate visual search. On the othet haisual integration experiment where they found addition of
(see Figure 3), in the auditory domain the section in whieh thask irrelevant auditory stimulus increased the accuramy a
target lies is salient, but the exact location of visual stils decreased the reaction time in correctly identifying a aisu
cannot be identified. target. It is in agreement with our model.

We model the integration of visual and auditory saliencieBs
in a combined audio-visual salience map as described in.Eq.4
The combined audio-visual salience map is shown in Figure 4. V. CONCLUSION AND FUTURE WORK

The combined AV salience map illustrates the idea that com-We present a way of combining separate auditory and visual
bining salience maps from multiple modalities can enhansalience maps into an audio-visual salience map where maps
the search for the salient target in an environment amofrgm their respective modalities are combined multipligzly.
distractors. Despite the fact that the visual salience malesi We retain saliencies of all visual stimuli while enhancihg t
the target less conspicuous than the distractors, addiag #alience of the target visual stimulus in a model of audio-
auditory map allows the combined map to roughly identifyisual interaction. Without the auditory stimulus, the uvat
the location of the stimulus. Without the auditory stimylugdistractors exhibit higher salience compared to the visual
visual distractors exhibiting higher salience than theydar target. However, when an auditory stimulus co-occurs with
are attended to first. However, when an auditory stimulus cihve target visual location the effect is reversed, making th
occurs with the target location, the target becomes moiengal visual target more salient than the distractors. Our resgtee
than the distractors due to multisensory interaction betwewith previous neurophysiological studies [2] which esistbl
the auditory and visual modalities. The audio-visual salje that audio-visual integration is highly effective when thee
maps for a couple more stimulus conditions are in Figure Seliability is low in individual modalities taken separbteln

IV. RESULTS ANDDISCUSSION

A. Computational Modeling Results

Hardware Implementation Results



M, —

Fig. 2. Proto-object saliency map of the visual stimulus. diothat target is less salient than distractors

Fig. 3. Auditory stimulus which is also the ASM modeled as a dimeensional Gaussian. Width of the Gaussian correspondsdertainty in location,
height to signal reliability

Fig. 4. Combined audio-visual saliency map. Notice the enéraent of saliency of the target. Now, target is more conspigwampared to the distractors,
a reversal effect.

Stimulus condition 11

(@) | | .

(c)

(o) —
Stimulus condition 19

Fig. 5. A few more examples of AV maps: (a) Visual stimuli; (b) Aledy Saliency Map; (c) Visual proto-object based saliencypm@) Audio-visual
saliency map



the future we would like to compare our results with humajao] A. F. Russell, S. Mihalas, E. Niebur, and R. Etienne-Cunygsj “A

attention data in multisensory environments.
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