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Abstract—In this paper we provide an overview of audio-
visual saliency map models. In the simplest model, the location
of auditory source is modeled as a Gaussian and use different
methods of combining the auditory and visual information. We
then provide experimental results with applications of simple
audio-visual integration models for cognitive scene analysis. We
validate the simple audio-visual saliency models with a hardware
convolutional network architecture and real data recorded from
moving audio-visual objects. The latter system was developed
under Torch language by extending the attention.lua (code)
and attention.ui (GUI) files that implement Culurciello’s visual
attention model.

I. I NTRODUCTION

Scientists and engineers have traditionally separated the
analysis of a multisensory scene into its constituent sensory
domains. In this approach, for example, all auditory events
are processed separately and independently of visual and
somatosensory streams even though the same multisensory
event may give rise to those constituent streams. It was
previously necessary to compartmentalize the analysis because
of the sheer enormity of information as well as the limita-
tions of experimental techniques and computational resources.
With recent advances in science and technology, it is now
possible to perform integrated analysis of sensory systems
including interactions within and across sensory modalities.
Such efforts are becoming increasingly common in cellular
neurophysiology, imaging and psychophysics studies [1], [2].
A better understanding of interaction, information integration,
and complementarity of information across senses may help us
build many intelligent algorithms for object detection, object
recognition, human activity and gait detection, surveillance,
tracking, biometricsetc, with better performance, stability and
robustness to noise. For example, fusing auditory (voice) and
visual (face) features can help improve the performance of
speaker identification and face recognition systems [3], [4].

There are several examples of highly successful neuromor-
phic engineering systems [5], [6] that mimic the function
of individual sensory systems. However, the efforts have so
far been limited to modeling only individual sensory systems
rather than the interaction between them. Our goal in this work
is to build computational models of multisensory processing to

analyze real world perceptual scenes. We limit our focus to two
important sensory systems: the visual and auditory systems.
Our work is divided into two parts, one being computational
verification and the other being hardware implementation. We
investigate the nature of multisensory interaction between the
auditory and visual domains. More specifically, we consider
the effect of a spatially co-occurring auditory stimulus onthe
salience of an inconspicuous visual target at the same spatial
location among other visual distractors. Temporal concurrency
is assumed between visual and auditory events. The motiva-
tion for this work is that audio-visual integration is highly
effective when cue reliability is highly degraded in respective
unisensory modalities. In such a scenario it is beneficial to
integrate information from both sensory modalities in order to
harness the advantages of each. Neurological studies [7], [2],
[8] have shown that audio-visual integration elicits a superad-
ditive response when stimuli in individual modalities are not
sufficiently reliable. Results from a hardware implementation
of the model are also considered.

II. RELATED WORK

There is a considerable amount of prior research on mul-
tisensory processing, specifically audio-visual integration in
psychology and neuroscience. For a detailed review of neu-
roscience and psychophysics research related to audio-visual
interaction, please refer to [9], [10]. Here we review research
in computational and engineering domains which so far is
very limited. We specifically focus on different mechanisms
for combining auditory and visual saliency maps. In [11],
a one-dimensional computational neural model of saccadic
eye movement control by Superior Colliculus (SC) is in-
vestigated. The model can generate three different types of
saccades: visual, multimodal and planned. It takes into account
different coordinate transformations between retinotopic and
head-centered coordinate systems, and the model is able to
elicit multimodal enhancement and depression that is typically
observed in SC neurons [12], [13]. However, the main focus
is on Superior Colliculus function rather than studying audio-
visual interaction from a salience perspective. In [14], a multi-
modal bottom-up attentional system consisting of a combined



audio-visual salience map and selective attention mechanism is
implemented for the humanoid robot iCub. The visual salience
map is computed from color, intensity, orientation and motion
maps. The auditory salience map consists of the location of the
sound source. Both are registered in ego-centric coordinates.
The audio-visual salience map is constructed by performing
a pointwisemax operation on visual and auditory maps. In
[15], after computing the audio and visual saliency maps,
each salient event/proto-object is parameterized by salience
value, cluster center (mean location), and covariance matrix
(uncertainty in estimating location). The maps are linearly
combined based on [16]. Extensions of this approach can be
found in [17]. Even though the models in [15], [14] apply
audio-visual salience in useful applications, they lack simplic-
ity and biological plausibility. In [18], audiovisual arrays for
unthetered spoken interfaces are developed. The arrays localize
the direction and distance of an auditory source from the
microphone array, visually localize the auditory source, and
then direct the microphone beamformer to track the speaker
audio-visually. The method is robust to varying illumination
and reverberation, and the authors report increased speech
recognition accuracy using the AV array compared to non-
array based processing.

III. D ATA AND METHODS

The effectiveness of audio-visual integration in detecting
weakly visible visual target among many distractors is studied
by computing an audio-visual (AV) saliency map. The visual
stimuli (target and distractors) are deliberately made barely
distinguishable from each other. If the auditory stimulus helps
identify the target the AV saliency map should reflect the
same result. The effectiveness of AV saliency with respect
to its unimodal counterparts is studied for different stimulus
conditions.

A. Visual Stimuli

The visual stimuli are rectangular imagess with a width of
1800 pixels and height of 150 pixels (Figure 1). A horizontal
reference line guides the observer to possible locations of
the target and distractors. The task is to identify a weakly
visible target symbol among a number of more conspicuous
visual distractors in the audio-visual scene. The targets are
displayed as the letter ‘Y’ and distractors are displayed as
the letter ‘X’ (Figure 1). The number of distractors,D, is
randomly chosen to be between 1 and 5 inclusive. There is
always only one target in every stimulus image. Neither the
target nor distractors are allowed to lie within 10 pixels from
the image boundaries to avoid unwanted artifacts from the
visual salience computation. Distractors are randomly selected
without replacement from all possible spatial locations onthe
abscissa. Among the remaining locations, a target locationis
randomly chosen. Care is taken to avoid symbols flanking
too close to each other. The intensities of both target and
distractors are kept identical to avoid intensity-relatedsalience
differences. Salience differences in our stimuli are observed
because of differences in shape of the symbols only.

Both the distractors and target are distinguishable from the
background, but identifying the target from the distractors is
a difficult task. If we rely on using the visual domain alone to
locate the target, this search requires a considerable amount of
attention and thus serial processing to identify if each symbol
is the target.

B. Auditory Stimuli

The auditory space is modeled to be spatially coincident
with the visual space covering the entire image. We simu-
late the activation of one of the 8 speakers that are placed
equidistant to each other covering the visual space of the entire
imgage. So, the auditory space is divided into 8 equal sections.
If the visual target (‘Y’) is present in a specific section, a
Gaussian window with zero mean and unit variance is centered
in that section to represent the approximate auditory signal
location. Since auditory localization is generally less precise
than visual localization we center the envelope in a particular
section of the map irrespective of the exact location of the
visual target within that section.

Our model for the auditory signal also serves as an auditory
salience map (ASM) because we take spatial location of sound
stimulus to be the only relevant feature. Hence, the ASM
consists of an activation region if a sound stimulus originates
from that location. The sound localization inaccuracy observed
in both humans and primates is the motivation to model the
stimulus as a Gaussian window (Eq. 1) situated at the location
of the sound stimulus:
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In Eq. 1,Qv represents the section in which the visual target
lies, xo is the width of the window equal to the length of
the active section. The parameterα = 2.5, reciprocal of the
standard deviation controls the width of the window [19]. The
width of the Gaussian roughly corresponds to an uncertainty
in auditory stimulus location and the height corresponds tothe
reliability of the auditory cue.

C. Audio-Visual Saliency

We first compute a proto-object based salience map [20] of
the visual scene to investigate the relative visual salience of
target and distractors. In the auditory domain, since stimulus
location is the only feature considered, the stimulus location
map (Figure 3) also serves as the auditory saliency map which
is already computed. The visual and auditory saliency maps
are combined multiplicatively as:

S = f(A)⊗ V (2)

= (1 +A)⊗ V, (3)

whereV =
1

3
(n(Ō) + n(Ī) + n(C̄)). (4)



Fig. 1. Visual stimulus with target (’Y’) and distractors (’X’). The distractors are visually more conspicuous than target

In Eqs. 2 - 4,S is the audio-visual salience map,A is the
auditory salience map, andV is the proto-object based visual
salience map. The normalization operator is denoted byn(.),
and point-wise multiplication is denoted by the symbol⊗.
Color, orientation and intensity conspicuity maps are denoted
by C̄, Ō and Ī, respectively. For more details of visual proto-
object based saliency computation, please refer to [20]. By
combining the auditory and visual saliency maps as shown in
Eq. 4, we retain all salient visual stimuli and also enhance
the salience of only those visual stimuli that have a spatially
co-occurring salient event in the auditory domain.

D. Hardware Implementation

IV. RESULTS AND DISCUSSION

The results of the computational modeling and hardware
implementation are presented in Sections IV-A and IV-B,
respectively.

A. Computational Modeling Results

In this part, results and discussion regarding the effec-
tiveness of audio-visual integration from a purely computa-
tional perspective are provided. The visual proto-object based
salience map is computed with default parameters listed in
[20]. In the visual domain (Figure 2) we see that distractors
are more salient than the target. This salience result implies
that an observer is more likely to shift his or her attention to the
distractors than to the target. In such a scenario, identifying the
target requires an elaborate visual search. On the other hand
(see Figure 3), in the auditory domain the section in which the
target lies is salient, but the exact location of visual stimulus
cannot be identified.

We model the integration of visual and auditory saliencies
in a combined audio-visual salience map as described in Eq. 4.
The combined audio-visual salience map is shown in Figure 4.

The combined AV salience map illustrates the idea that com-
bining salience maps from multiple modalities can enhance
the search for the salient target in an environment among
distractors. Despite the fact that the visual salience map makes
the target less conspicuous than the distractors, adding the
auditory map allows the combined map to roughly identify
the location of the stimulus. Without the auditory stimulus,
visual distractors exhibiting higher salience than the target
are attended to first. However, when an auditory stimulus co-
occurs with the target location, the target becomes more salient
than the distractors due to multisensory interaction between
the auditory and visual modalities. The audio-visual saliency
maps for a couple more stimulus conditions are in Figure 5.

Our results confirm the effectiveness of audio-visual
salience when cues in unisensory modalities are weak, there-
fore cannot elicit a strong response based on unisensory cue
alone. The effectiveness of multisensory integration is in-
versely related to effectiveness of unimodal cues [8]. Since we
observe increased multisensory salience for the weakly visible
target, our model exhibits a form of inverse effectiveness
as reported in previous studies [2]. However, the results are
preliminary and more testing with different cue reliability
conditions is needed to confirm this.

Our model can be advantageous compared to that of [14]
because the latter model only highlights salient regions from
individual domains. For example, in a scenario where there
are three types of events (unimodal auditory, unimodal visual
and bimodal audiovisual), the audiovisual event should be
more salient than the unimodal events. However, the model
from [14] may not account for this. On the other hand, our
model assigns higher salience to bimodal events as compared
to unimodal ones. Our model also agrees with previous studies
[16], [21] where lateralized auditory stimulation was found to
topographically increase the salience of the visual field. The
model favorably compares with some other experiments where
stimulus conditions are slightly different, but visual response
enhancement was observed. In [22], a sudden sound, spatially
coincident with asubsequently occurring visual stimulus was
found to improve the detectability of the flash. Our model
shows evidence for their main conclusion that involuntary at-
tention to spatially registered sound enhances visual response.
In [23] event related potentials were recorded in an audio-
visual integration experiment where they found addition of
task irrelevant auditory stimulus increased the accuracy and
decreased the reaction time in correctly identifying a visual
target. It is in agreement with our model.

B. Hardware Implementation Results

V. CONCLUSION AND FUTURE WORK

We present a way of combining separate auditory and visual
salience maps into an audio-visual salience map where maps
from their respective modalities are combined multiplicatively.
We retain saliencies of all visual stimuli while enhancing the
salience of the target visual stimulus in a model of audio-
visual interaction. Without the auditory stimulus, the visual
distractors exhibit higher salience compared to the visual
target. However, when an auditory stimulus co-occurs with
the target visual location the effect is reversed, making the
visual target more salient than the distractors. Our results agree
with previous neurophysiological studies [2] which establish
that audio-visual integration is highly effective when thecue
reliability is low in individual modalities taken separately. In



Fig. 2. Proto-object saliency map of the visual stimulus. Notice that target is less salient than distractors

Fig. 3. Auditory stimulus which is also the ASM modeled as a one-dimensional Gaussian. Width of the Gaussian corresponds to uncertainty in location,
height to signal reliability

Fig. 4. Combined audio-visual saliency map. Notice the enhancement of saliency of the target. Now, target is more conspicuous compared to the distractors,
a reversal effect.

Fig. 5. A few more examples of AV maps: (a) Visual stimuli; (b) Auditory Saliency Map; (c) Visual proto-object based saliency map; (d) Audio-visual
saliency map



the future we would like to compare our results with human
attention data in multisensory environments.
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