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Abstract—We present deep neural network models applied
to tracking objects of interest. Deep neural networks trained
for general-purpose use are introduced to conduct long-term
tracking, which requires scale-invariant feature extraction even
when the object dramatically changes shape as it moves in the
scene. We use two-layer networks trained using either supervised
or unsupervised learning techniques. The networks, augmented
with a radial basis function classifier, are able to track objects
based on a single example. We tested the networks tracking
capability on the TLD dataset, one of the most difficult sets of
tracking tasks and real-time tracking is achieved in 0.074 seconds
per frame for 320x240 pixel image on a 2-core 2.7GHz Intel i7
laptop.

I. INTRODUCTION

Visual tracking is one of the most crucial components for
robotic vision system. It is even more difficult when the
object changes its scale, pose, or illumination. Many brilliant
approaches in computer vision have been proposed to conduct
long-term visual tracking [1]-[4], but these fail when occlusion
happens slowly. Visual tracking still remains a challenging task
in computer vision. It is interesting to note that the human
visual system outperforms all existing machines in vision
applications. Humans do not need any information or prior
knowledge of the object before tracking. They are able to track
unknown object with only few images.

In recent years, deep learning methods have advanced and
become the dominant artificial vision system for classification
and categorization problems. The architecture of deep learning
is inspired by the mammalian visual system where a simple
algorithm is invoked in the neocortex through a recursive
hierarchy [5]-[10]. Most deep architectures follow the multi-
stage Hubel-Wiesel architecture, consisting of a hierarchy of
layers where each layer consists of filtering, non-linearity,
and pooling stages. Recent works have shown how well deep
networks can learn features from data in either a supervised
[6], [11] or unsupervised manner [12]-[15] and state-of-the-art
results have been achieved with optimized learning algorithms
and massive datasets [16], [17]. However, most of these works
are not applicable to real-time applications that are strictly
constrained by the network size, the dataset volume, and the
optimization algorithm.

In this paper, we present a tracking model with deep neural
networks for real-time robotic vision applications. The net-
work is trained in different ways: no training, supervised train-
ing, and unsupervised training. Our goal of this experiment is
to evaluate the potential and limitations of our prototype for
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Fig. 1. Structure of our tracking system.

general purpose tasks rather than specific tasks. We measured
performance with TLD dataset [18].

This paper presents as follows: Section II explains the
tracking algorithm and preliminaries. Section III describes
network properties used in our experiment. Section IV shows
properties of dataset and experimental results and section V
presents analysis and limitations of our approach.

II. METHODS

In this work, we use a Convolutional Neural Network
(ConvNet) [19] with filter banks trained by different training
methods. Figure 1 summarizes the structure of our approach.
Once training is completed, each RGB frame is applied, in the
same ways as human retina senses light [20], to deep neural
network and transformed into the multi-dimensional feature
vectors at the output of ConvNet. Then, a radial basis function
network (RBFN) is used to produce confidence map based
on the distance between multi-dimensional feature vectors
and a reference vector. The algorithm is described as follows:

Algorithm Tracking with convolutional neural network
Input Video frames (I, ..., I(®))

Rectangle (1) of object in the first frame
Output Rectangle (7, ..., 7(®)) of object

Initialization (for frame I(1):

1) Normalize frame I(!) by subtracting the mean and
dividing the standard deviation.

2) Extract a small patch X ") from rectangle ().

3) Feed the patch X1 to the network and compute the
single output vector vy = fconvNet (X (1)) where
Yy g gphxt,

4) Generate the first neuron, centered at Y in RBEN to
save the feature vector Y (1) for positive prototype.

Tracking (for each frame I(®), ¢t > 1)



1) Normalize frame I®) by subtracting the mean and
dividing the standard deviation.

2) Slice the whole frame I(¥) into small patches X l(;) (i,j
are indexes for row and column).

3) Feed the small patches X f; ) to the network and compute

the output vectors Yigt) = foonuNet (Xz(;)) where

Y;g_t) € Rkx1
4) Produce confidence map based on the distance between
inputs Yig-t) and the neuron Y'() in RBFN.

5) Draw a rectangle (*) where the peak of the map is larger
than threshold 7.

We used the Torch7 software for all our training and testing
experiments [21], which incredibly shortens the processing
time compared to Matlab.

A. Convolutional Neural Network

Our approach to tracking tasks mostly relies on the power
of the ConvNet. [6] The ConvNet uses reduced parameters
in the network compared to multilayer perceptrons (MLP).
Considering the fact that the size of datasets for training
is determined by the number of parameters, we can greatly
reduce the cost of datasets with the help of shared weights.
Each layer consists of three sequential operations as follows:

o Spatial convolutions with kernels
 tanh non-linearity
e Pooling

Note that the window size of last L2-pooling layer varies
depending on the size of the object that we are interested in
since convolution does not give fixed output size for any size
of input.

1) Spatial Convolution: Each layer contains & feature maps
hijr and the equation for the feature map is described as
follows:

By = tanh (Wi X + by ) )

Note that by, is a bias, W € R™*" is a kernel and X € R™*" is
an image patch where n is the size of the window. The shared
weights /¥ are independent of time index i and spatial index
J.

2) Pooling: Pooling is applied in order to create spatial
invariance while passing the distinct features to the next layer.
Spatial L2-pooling is frequently used and defined as:

(t) 1 m n

2
(t)
T —

where m x n is the size of the window and y,(:) is the
k-dimensional vector.

B. Radial Basis Function Network

The output feature vector from the network is passed to the
RBFN. It computes the distance from the reference vectors
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Fig. 2. Kernels of Ist layer from each network: (a) kernels randomly
initialized, (b) kernels trained with back-propagation in a supervised method,
(c) kernels trained with K-means clustering in an unsupervised method.

defined as centroids of neurons and finds the closest match.
N
(V) =Y wio(lY - Yil) 3)
i=1

where X; is a multi-dimensional feature vector of the object
and N defines the number of prototypes of the object. w, is
a weight and we used a 32-dimensional Gaussian function for
radial basis function ¢ (z).

III. NETWORK PROPERTIES

We used three different networks for our experiment:
network without pre-training, network with supervised and
network with unsupervised learning methods. Figure 2 shows
kernels from different networks at a glance. All kernels in the
network are 7 x 7. The first layer and the second layer contain
32 kernels respectively. The connections are established by the
random connection matrix in the Torch7 library. L2-Pooling
is added to the output of each layer and the size of pooling
window is 2 x 2 with the step size of 2.

A. Parameters with random initialization

We initialize the network with random parameters. Kernels
in the first layer are randomly generated from normal distribu-
tion with zero mean and a standard deviation of 0.8. For the
second layer, kernels follow a normal distribution with zero
mean and a standard deviation of 0.4. These parameters are
chosen empirically. Using high standard deviation saturates
all network outputs to 1 since the logistic function tanh is
bound by that value.

B. Parameters with supervised learning method

Next, we use a network with supervised training. This
network is trained with fully labeled images from the
Barcelona dataset to learn low-level features [22]. Using
back-propagation with stochastic gradient descent (SGD), su-
pervised learning forces kernels to learn common features
from the dataset quickly compared to unsupervised learning
methods.

C. Parameters with unsupervised learning method

The last network for our experiment is trained with an
unsupervised K-means clustering learning [23]. The advantage
of K-means learning is that it is fast and more biologically
plausible than SGD. We used CIFAR10 dataset [24] to train



our network. No labeled data is required for training and only
the parameter is the number of centroids. K-means updates
kernels by averaging given inputs and their closest centroids
as follows:

@) w§-i) + DU T2(® if j = argmax |D(1)Txi‘
E w!? otherwise

J
| @
where z(?) is a random patch from dataset and D is a dictio-
nary of kernels. wy) is j-th kernel and should be normalized

after updates.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of our system on a chal-
lenging benchmark, the TLD dataset. It is an appropriate
dataset to evaluate performance for tracking task since each
video sequence has various challenges such as occlusion and
scale/pose/illumination changes as summarized in the table I.
Each video contains only one target and its ground-truth.
Performances are measured by the F-measure F' = %. Note
that Precision P is a rate of correctly predicted results among
all predictions labeled as positive and Recall R is a rate of
correctly predicted results among actual positives in ground-
truth. Detection is classified as positive if the overlapped area
between bounding boxes from prediction and ground-truth is
greater than 25 percent.

Through our experiment, tracking performance is measured
and presented in table II. Our tracker shows the best perfor-
mance for the car dataset, and this beats the state-of-the-art
result of the P-N tracker [3]. However, overall performance
fluctuates for each dataset and in fact the records from our net-
work are not as comparable as those from various approaches
in computer vision.

To focus on the performance versus the way the networks
are trained, the network with K-means clustering performs the
best prediction among others. It is interesting to note that the
random network shows the best records for some datasets such
as Pedestrian 1, Motocross and Panda.

For the sake of the parallel structure of our system, it takes
about 0.074 seconds to process one frame (13.5 fps) which is
320 x 240 pixel image on a 2-core 2.7GHz Intel i7 laptop.

V. ANALYSIS AND LIMITATION

The tracking system described in this paper is built with
deep neural networks which is a novel approach. This model
is based on the idea of neocortical algorithm that human brain
processes a simple and universal algorithm over the cortex
through the recursive hierarchy. Convolutions with kernels
followed by poolings is recursively applied. This is similar to
H-MAX [10]. We train filters with different types of learning
methods instead of using hard-wired Gabor filters.

The results in table II demonstrates that the unsupervised
network with Gabor-like filters has the best performance in
tracking which also has been proven in many literatures [9],
[12], [23], [26]. The combination of deep neural network
and radial basis function helps to solve the classification
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Fig. 3. (a) The input frame with the target from Car dataset. (b) The
confidence map showing a foreground-background separation by deep neural
network and radial basis function network.

problems easier by extracting features from inputs space and
transforming them into high dimensional vector via tanh
nonlinear mapping. The rationale for this is based on Cover’s
theorem that a pattern classification problem cast in a nonlinear
high-dimensional space is more likely to be linearly separable
than in a low-dimensional space [27]. The confidence map
in figure 3 shows a success in the foreground-background
separation with the transformation and the object tracking is
performed.

Many groups in machine learning focus on huge networks
with sophisticated learning techniques [16], [17], but most
of them cannot be applied to robotic vision, whereas our
aim is to implement a real-time application for robotic tasks.
The parallel structure of our model increases the chance of
acceleration by multi-processor or custom hardware [28].

However, the deep network as a tracker fails in some
datasets because of the limitation in feature representation.
The goal of a classification problem is to label and classify
data into several categories, but it seems to neglect detail
information (i.e., cat’s appearance). For robust tracking, the
deep neural network should be able to catch not only features
but also appearance. We found that the supervised network is
not suitable for a general purpose system such as tracking
an unknown object. The reason for the failure is that all
parameters in the network are adjusted and aligned to increase
confidence on the specific categories of the labeled dataset and
in the process loses information not relevant to that task. This
type of failure is observed in the Pedestrian 2, Pedestrian 3,
and Carchase datasets.

The deep neural network with random kernels in our exper-
iment shows comparable performance to the result of super-
vised network. Similar results have been observed in recent
works [29], [30]. These results from randomness support the
fact that the random kernels themselves can be considered as a
set of basic blocks and they are able to extract features in spite
of unknown random pattens. Then, the features are organized
by the architecture and pipelined to the next layer. This implies
that selection of the network architecture is as important as the
training method.



Video Sequence
Properties David | Jumping | Pedestrianl | Pedestrian2 | Pedestrian3 | Car | Motocross | Carchase | Panda
Camera Movement yes yes yes yes yes yes yes yes yes
Partial occlusion yes no no yes yes yes yes yes yes
Full occlusion no no no yes yes yes yes yes yes
Pose change yes no no no no no yes yes yes
Illumination change yes no no no no no yes yes yes
Scale change yes no no no no no yes yes yes
Similar objects no no no yes yes yes yes yes no
TABLE 1

PROPERTIES OF THE VIDEO DATASET USED IN OUR EXPERIMENT [25].

ConvNet with random parameters Supervised ConvNet Unsupervised ConvNet
Sequence Frames (No pre-learning) (back-propagation with SGD) | (K-means clustering learning)

Precision/Recall/F-measure Precision/Recall/F-measure Precision/Recall/F-measure
David 761 0.08 /0.05 / 0.06 0.12/0.07 / 0.09 0.08/0.05/0.06
Jumping 313 0.28 /0.28 / 0.28 0.51/0.51/0.51 02270227022
Pedestrian 1 140 0.81/0.81/0.81 0.81/0.81/0.81 0.64/0.64/0.64
Pedestrian 2 338 0367046 /041 035/045/0.39 0.61 / 0.64 / 0.63
Pedestrian 3 184 041/049/045 048 /057 /0.52 047/70.56/051
Car 945 0.68/0.73/0.70 0.37 /040 /0.39 0.97 /0.96 / 0.97
Motocross 2665 0.14 / 0.26 / 0.18 0.12/0.23/0.16 0.14 / 0.26 / 0.18
Carchase 9928 0.20/0.21/0.21 025/0.26/025 0.38 /043 /040
Panda 3000 040 /044 /041 0.36/040/0.38 0.26/0.29 /0.28
Mean 18274 0.26/0.29 /0.27 0.26/0.29/0.28 035/0.39/0.37

TABLE I
PERFORMANCE COMPARISON OF TRACKERS. ALL TRACKERS SHOWN IN THE TABLE IS TRAINED ON THE FIRST FRAME ONLY. WE USED THE FIXED
THRESHOLD 7 = 0.7 AND ADAPTIVE SPREAD 0 FOR RADIAL BASIS FUNCTION.

VI. CONCLUSION

We introduce a deep neural network to solve tracking prob-
lems. It extracts distinct features and transforms image patches
to high dimensional vectors. Then a radial basis function
computes the similarity between prototypes and generates a
confidence map. The new position of the object is found at
the peak of the map.

We have shown that deep neural networks are able to track
the target though performance fluctuates depending on the
training method. In addition, our architecture can be processed
in parallel and is similar to how the human brain works.

More importantly, training a network in a strongly super-
vised way does not guarantee high performance for a general
purpose system like tracking an unknown object. This is
closely connected to the question of how we achieve the
best feature representation from a dataset and further study
is needed to clarify this issue.
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