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Abstract—Recurrent Neural Networks (RNNs) have the ability
to retain memory and learn from data sequences, which are
fundamental for real-time applications. RNN computations offer
limited data reuse, which leads to high data traffic. This translates
into high off-chip memory bandwidth or large internal storage
requirement to achieve high performance. Exploiting parallelism
in RNN computations are bounded by this two limiting factors,
among other constraints present in embedded systems. Therefore,
balance between internally stored data and off-chip memory
data transfer is necessary to overlap computation time with
data transfer latency. In this paper, we present three hardware
accelerators for RNN on Xilinx’s Zynq SoC FPGA to present how
to overcome challenges involved in developing RNN accelerators.
Each design uses different strategies to achieve high performance
and scalability. Each co-processor was tested with a character
level language model. The latest design called DeepRnn, achieves
up to 23× better performance per power than Tegra X1 devel-
opment board for this application.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are largely used to
learn from sequences of data [1], and it has been shown to
be successful in various applications, such as speech recog-
nition [2], machine translation [3] and scene analysis [4]. A
combination of a Convolutional Neural Network (CNN) with
a RNN can lead to fascinating results such as image caption
generation [5], [6].

Long Short Term Memory (LSTM) [7] is a specific RNN
architecture that implements a learned memory controller for
improved training. LSTMs are largely composed of matrix-
vector multiplications across multiple layers to process a single
element from a sequence. In matrix-vector multiplications,
only vectors are reused, because once a matrix row is processed
a different matrix row needs to take place. Thus, it is hard to
reuse matrix data, which is the majority of data to be processed.
Adding more compute units reduces the computation time,
but if memory can’t supply new matrix values fast enough,
then the compute units utilization rate will be low. Exploiting
parallelism and hardware scaling is a challenging design task
for RNNs. The key to achieve high performance in RNNs
hardware accelerators is to overlap data transfer time with
computation time. Continuously streaming data from off-chip
memory is expensive in terms of power and it is bounded
by off-chip memory bandwidth available [8]. Storing matrix
values in on-chip memory is not a scalable design, since it
depends on RNN model size.

The main contribution of this paper is to present different
design strategies that balances memory bandwidth and internal

storage utilization to optimize performance per power for
RNN workloads. This paper presents three different hardware
accelerators implemented on Xilinx’s Zynq SoC FPGA [9].
The first architecture (DeepStream) streams all data from off-
chip memory to the co-processor. It achieves high performance,
but it is limited by the off-chip memory bandwidth. The
second design (DeepStore) makes use of on-chip memory to
store all necessary data internally. This achieves low off-chip
memory bandwidth, but it is limited by the available on-chip
memory. Both previous designs are either limited by off-chip
memory bandwidth or available on-chip resources. The third
design (DeepRnn) balances these two points to achieve high
performance and scalability. As proof of concept, the hardware
was tested with a character level language model made with
2 LSTM layers and 128 hidden units.

The next following sections present the background for
LSTM, related work, implementation details, the experimental
setup and the obtained results.

II. LSTM BACKGROUND

The main feature of RNNs is that they can learn from
previous information. Standard RNN can retain and use recent
past information [10]. But it fails to learn long-term dependen-
cies. This is where LSTM comes into play. LSTM is an RNN
architecture that explicitly adds memory controllers to decide
when to remember, forget and output. This makes the training
procedure much more stable and allows the model to learn
long-term dependencies [7]. The LSTM hardware module that
was implemented focuses on the vanilla LSTM [11], which is
characterized by the following equations:

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ot = σ(Wxoxt +Whoht−1 + bo) (3)

c̃t = tanh(Wxcxt +Whcht−1 + bc) (4)

ct = ft � ct−1 + it � c̃t (5)

ht = ot � tanh(ct) (6)

Where σ is the logistic sigmoid function, � is element
wise multiplication, x is the input vector of the layer, W is
the model parameters, c is memory cell activation, c̃t is the
candidate memory cell gate, h is the layer output vector. The
subscript t− 1 means results from the previous time step. The
i, f and o are respectively input, forget and output gate. The
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Fig. 1. Three different hardware accelerators. On the left: the DeepStream block diagram. It is mainly composed of three gate units which will process the
data stream from DMA. In the middle: the DeepStore block diagram. The main difference is the weight storage unit and the number of gate units. On the right:
the DeepRnn block diagram. The main difference is the weight storage is smaller and the gate units are arranged in a grid. The host processor is responsible
for initiating the DMA data transfer and the configuration of the co-processor.

combination of two matrix-vector multiplications and a non-
linear function, f(Wxxt +Whht−1 + b), is referred as gate.
A deep LSTM network would have multiple LSTM modules
cascaded in a way that the output of one layer is the input of
the following layer.

III. RELATED WORK

Co-processors for accelerating deep learning have been
implemented on FPGAs [12]–[14]. Their compute engine are
focused on accelerating spatial convolutions, whereas RNNs
are mainly composed of matrix-vector operations, which brings
different design challenges.

FPGA implementations of RNN has been explored in [15],
[16]. A more recent study of RNN on FPGA is described by
[17]. Their approach was to unfold the RNN model into a fixed
number of timesteps and compute them in parallel. A LSTM
learning algorithm using Simultaneous Perturbation Stochastic
Approximation (SPSA) for hardware friendly implementation
was described in [18]. The paper focuses on transformation of
the learning phase of LSTM for FPGA, rather than inference
phase, which is the focus in this paper.

This work presents three different approaches of imple-
menting RNN in FPGA, focusing on the LSTM architecture.
And we present an analysis on the main design points for
RNNs accelerators.

IV. IMPLEMENTATION

A. Hardware

All co-processors were implemented on Xilinx Zynq-7000
SOC FPGA [9], and they are controlled by an on-chip Dual
ARM Cortex-A9 MPCore. All designs use four 32 bit DMA
ports, capable of achieving aggregate bandwidth up to 3.8GB/s
full-duplex. All computations are done in Q8.8 fixed point, and
the accelerators run at 142MHz.

The first design is called DeepStream and its main strategy
is to stream all the data from off-chip memory to the compute
units. The overall design is shown in the left most diagram in
figure 1.

The main building block of the implemented design is
the gate unit, which performs the operations: matrix-vector
multiplications and non-linear functions (hyperbolic tangent
and logistic sigmoid). In each gate unit, there are two Multiply
ACcumulate (MAC) units that compute Wxxt and Whht−1 in

parallel. The results from the MAC units are added together
and it goes to an element wise non-linear module, which is
implemented with piece-wise linear segmentation. The input
vectors are stored in the Vector Memory (VM) until a LSTM
layer is finished and new vectors come in. The intermediates
results from gates units are locally stored in different FIFOs.
The final result is computed by E-wise block that receives the
data from the FIFOs and the ct−1 vector from DMA. The out-
put vectors ct and ht go back to main memory through DMA.
In DeepStream, 4 MACs units run in parallel. DeepStream was
implemented on the Zedboard, which contains the Zynq-7000
SOC XC7Z020. The total on-chip power was 1.9W.

The advantage of DeepStream is simplicity and high MAC
utilization. The main disadvantage is the high off-chip mem-
ory bandwidth requirement, which is caused by continuously
streaming of each row of each weight matrix. Another draw-
back is that it only uses 4 MAC units in parallel to perform the
matrix-vector multiplication and scaling is limited by memory
bandwidth. The second design is called DeepStore and its main
strategy is to store all data into internal memory. The overall
design is shown in middle of figure 1.

The main operation is the same from the DeepStream, but
the difference is that all the matrix rows are stored into Weight
Memory (WM) and the MAC units are replicated to multiply
all matrix rows with the vector at same time. In DeepStore,
the gate unit is replicated 128 times, except the non-linear
function, which is shared among all MAC units. The DeepStore
architecture was implemented on the Xilinx ZC706 platform,
which contains the Zynq-7000 XC7Z045 SoC. The total on-
chip power is 2.3W.

The advantage of DeepStore is that it uses low off-chip
memory bandwidth and achieves high-performance. The dis-
advantage is that it is not scalable, because the number of MAC
units and the internal memory requirement are dependent on
the weight matrix height. In order to achieve scalability and
high performance, we need a better arrangement of MAC units
and a better data transfer strategy that doesn’t hit the bandwidth
or internal memory usage boundaries. A different design called
DeepRnn was implemented. The design is shown on the right
side of figure 1.

DeepRnn’s strategy is to achieve balance between Deep-
Store and DeepStream designs, by storing partial weight data
into internal memory. The main processing element of the
DeepRnn is the gate grid, which receives data from the storage
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Fig. 2. FPGA utilization from each implemented design. The DeepRnn
utilization scales linearly with the size of the MAC array.
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Fig. 3. Off-chip memory bandwidth requirement for each implemented
architecture.

elements: Vector (VM) and Weight Memory (WM). Gate grid
contains a matrix of MAC units. Each MAC unit processes
a different row of the weight matrix. The vector values are
the same for all MAC units. All MACs in a row are Single
Instruction Multiple Data (SIMD). Different rows process and
produce data independently.

VM and WM are double buffer single port SRAMs that
were designed to provide data in blocks of size of number of
MACs in a row. There is a WM bank for each MAC column
in the grid and one VM shared for all MACs. Double buffer
is the idea of having two memory banks, which are written
to and read from interchangeably. This way, memory write
can happen in parallel with read operation. In the case when
processing time is larger than data transfer time the use of
double buffer prevents the MACs from yielding, since transfer
time is overlapped with processing time. This is not the case
when processing time is faster than transfer time. Overlapping
the computation time with the data transfer time is the main
challenge for RNN, since RNN computation has little data
reuse.

The DeepRnn architecture was implemented on the Zed-
board Zynq-7000 SOC XC7Z020 (same from DeepStream).
Since DeepRnn is a scalable architecture, it could have differ-
ent number of MAC units independent of the LSTM model
size. A grid of 2× 2 MAC units were implemented for timing
comparison with the DeepStream, which also runs 4 MAC
units in parallel. WM is 16KB and VM is 2KB. The total
on-chip power is 1.8W.

V. EXPERIMENTS

To test the implemented hardware, we trained a character
level language model [19] using the training script by Andrej
Karpathy written in Torch7. The code can be downloaded from
Github1.

1https://github.com/karpathy/char-rnn

The character level language model predicts the next char-
acter given a previous character. Character by character, the
model generates a text that looks like the training data set,
which can be a book or a large internet corpora with more than
2MB of words. For this experiment, the model was trained on
a subset of Shakespeare’s work. The model is composed of 2
LSTM layers, each with 128 hidden units. The batch size was
50, the training sequence was 50 and learning rate was 0.002.

For profiling time, the Torch7 code was ran on other
embedded platforms to compare the execution time between
them. The Tegra X1 development board and the Odroid XU4
was used in this experiments. Odroid XU4 has the Exynos5422
with four high performance Cortex-A15 cores and four low
power Cortex-A7 cores (ARM big.LITTLE technology). The
low power Cortex-A7 cores was clocked at 1400MHz and the
high performance Cortex-A15 cores was running at 2000MHz.
A software LSTM implementation was ran on Zedboard’s
host processor dual ARM Cortex-A9 processor clocked at
667MHz. Finally, the hardware was ran on the co-processors
clocked at 142MHz.

VI. RESULTS

The use of fixed point Q8.8 data format introduces in-
significant quantization error, and comparing the results from
the software implementation with the hardware co-processor’s
output, the average percentage error for the ct was 3.9%
and for ht was 2.8%. Those values are average error of all
time steps. The best was 1.3% and the worse was 7.1%. The
recurrent nature of LSTM did not accumulate the errors and on
average it stabilized at a low percentage. The character level
language model generated 1000 characters text, that looks like
from Shakespeare’s works.

Both the Zedboard Zynq ZC7020 and ZC706 platforms has
4 Advanced eXtensible Interface (AXI) DMA ports available.
Each is ran at 142MHz and send packages of 32 bits. This
allows aggregate bandwidth up to 3.8GB/s full-duplex transfer
between FPGA and external DDR3. Figure 3 shows the off-
chip memory bandwidth for each design.

The hardware to support the necessary AXIS ports and the
CPU interface was measured as the base utilization, which was
subtracted with the total utilization of each architecture. Figure
2 shows the utilization from each co-processor.

Figure 4 shows the performance per Watt for different
systems running the character generation application, which
is a LSTM of 2 layers of size 128. Even with same number
of MACs running in parallel and almost same on-chip power
consumption, DeepRnn (2 × 2) achieved lower performance
than DeepStream. But the main advantage of DeepRnn is that
we can scale the number of MAC units in DeepRnn, while
adding more MACs in DeepStream would hit the off-chip
memory bandwidth boundary. A projection of DeepRnn (4×4)
performance would be close to DeepStore design, which is
limited to available internal memory. For larger workloads,
Tegra X1 development board achieves performance of 446
Mops/W on a LSTM of 2 layers of size 1024, which is
comparable with the DeepRnn design.
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Fig. 4. Performance per unit power running LSTM for different embedded platforms (the higher the better).

VII. CONCLUSION

This work presented three different hardware implementa-
tion strategies of LSTM in FPGA. The hardware successfully
produced Shakespeare-like text using a character level model.
The study of the various methods to accelerate RNN in
hardware provided more insight of the main challenges. The
RNNs computation parallelism is hard to be exploit, because
of its limited data reuse. Overlapping the computation time
with the data transfer time is the main challenge for RNN
hardware implementations. Hence, a balance between memory
bandwidth and internal store must be achieved for optimal
design. Scalability and performance per Watt are also major
figures of merit in RNN hardware design. Furthermore, the
implemented hardware showed to be significantly faster than
other mobile platforms. This work can potentially evolve to a
RNN co-processor for future devices, although further work
needs to be done.
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