
IN NEUROMORPHIC ENGINEERING

Comparison Between Frame-Constrained Fix-Pixel-Value and Frame-Free
Spiking-Dynamic-Pixel ConvNets for Visual Processing

Clément Farabet, Rafael Paz, Jose Perez‐Carrasco, Carlos Zamarreño, Alejandro Linares‐Barranco, Yann LeCun,
Eugenio Culurciello, Teresa Serrano-Gotarredona and Bernabe Linares-Barranco

Journal Name: Frontiers in Neuroscience

ISSN: 1662-453X

Article type: Original Research Article

Received on: 28 Oct 2011

Accepted on: 21 Feb 2012

Provisional PDF published on: 21 Feb 2012

Frontiers website link: www.frontiersin.org

Citation: Farabet C, Paz R, Perez‐carrasco J, Zamarreño C, Linares‐
barranco A, Lecun Y, Culurciello E, Serrano-gotarredona T and
Linares-barranco B(2012) Comparison Between Frame-
Constrained Fix-Pixel-Value and Frame-Free Spiking-
Dynamic-Pixel ConvNets for Visual Processing. Front. Neurosci.
6:32. doi:10.3389/fnins.2012.00032

Article URL: http://www.frontiersin.org/Journal/Abstract.aspx?s=755&
name=neuromorphic%20engineering&ART_DOI=10.3389
/fnins.2012.00032

(If clicking on the link doesn't work, try copying and pasting it into your browser.)

Copyright statement: © 2012 Farabet, Paz, Perez‐carrasco, Zamarreño, Linares‐
barranco, Lecun, Culurciello, Serrano-gotarredona and Linares-
barranco. This is an open-access article distributed under the
terms of the Creative Commons Attribution Non Commercial
License, which permits non-commercial use, distribution, and
reproduction in other forums, provided the original authors and
source are credited.

This Provisional PDF corresponds to the article as it appeared upon acceptance, after rigorous

peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon.

file:///C:/inetpub/wwwroot/wss/VirtualDirectories/80/FrontiersTemp/ProvisionalPDF///www.frontiersin.org
file:///C:/inetpub/wwwroot/wss/VirtualDirectories/80/FrontiersTemp/ProvisionalPDF///www.frontiersin.org
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2012.00032
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2012.00032
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Comparison Between Frame-Constrained
Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel

ConvNets for Visual Processing

C. Farabeta,b,∗, R. Pazc, J. Pérez-Carrascod, C. Zamarreño-Ramosd,
A. Linares-Barrancoc,∗, Y. LeCuna, E. Culurciellob,∗,

T. Serrano-Gotarredonad, B. Linares-Barrancod

aComputer Science Department, Courant Institute of Mathematical Sciences, New York
University, 715 Broadway, New York, NY 10003, USA

bWeldon School of Biomedical Engineering Department, Purdue University, West Lafayette,
IN 47907, USA

cRobotic and Technology of Computers group, University of Seville, Seville, Spain
dInstituto de Microelectrónica de Sevilla, IMSE-CNM-CSIC, SPAIN

Abstract

Most scene segmentation and categorization architectures for the extraction of
features in images and patches make exhaustive use of 2D convolution operations
for template matching, template search and denoising. Convolutional Neural
Networks (ConvNets) are one example of such architectures that can implement
general-purpose bio-inspired vision systems. In standard digital computers 2D
convolutions are usually expensive in terms of resource consumption and impose
severe limitations for efficient real-time applications. Nevertheless, neuro-cortex
inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet
Convolution Processors, are advancing real-time visual processing. These two
approaches share the neural inspiration, but each of them solves the problem
in different ways. Frame-Based ConvNets process frame by frame video in-
formation in a very robust and fast way that requires to use and share the
available hardware resources (such as: multipliers, adders). Hardware resources
are fixed and time multiplexed by fetching data in and out. Thus memory
bandwidth and size is important for good performance. On the other hand,
spike-based convolution processors are a frame-free alternative that is able to
perform convolution of a spike-based source of visual information with very low
latency, which makes ideal for very high speed applications. However, hardware
resources need to be available all the time and cannot be time-multiplexed.
Thus, hardware should be modular, reconfigurable and expansible. Hardware
implementations in both VLSI custom integrated circuits (digital and analog)

∗Corresponding author
Email addresses: cfarabet@nyu.edu (C. Farabet), alinares@atc.us.es

(A. Linares-Barranco), euge@purdue.edu (E. Culurciello)
URL: www.clement.farabet.net (C. Farabet)

Preprint submitted to Neurocomputing January 26, 2012

and FPGA have been already used to demonstrate the performance of these
systems. In this paper we present a comparison study of these two neuro-
inspired solutions. A brief description of both systems is presented and also
discussions about their differences, pros and cons.

Keywords: Convolutional Neural Network (ConvNet),
Address-Event-Representation (AER), Spike-based Convolutions, Image
Convolutions, Frame-free vision, FPGA, VHDL

1. Introduction

Conventional vision systems process sequences of frames captured by video
sources, like webcams, camcorders (CCD sensors), etc. For performing complex
object recognition algorithms, sequences of computational operations are per-
formed for each frame. The computational power and speed required makes
it difficult to develop a real-time autonomous system. But brains perform
powerful and fast vision processing using small and slow cells (neurons) working
in parallel in a totally different way. Vision sensing and object recognition in
the mammalian brain is not performed frame by frame. Sensing and processing
are performed in a continuous way, spike by spike, without any notion of frames.

The visual cortex is composed by a set of layers (Serre, 2006; Shepherd,
1990), starting from the retina. The processing starts beginning at the time
the information is captured by the retina. Although cortex has feedback con-
nections, it is known that a very fast and purely feed-forward recognition path
exists in the visual cortex (Serre, 2006; Thorpe et al., 1996).

In recent years significant progress has been made towards the understanding
of the computational principles exploited by the visual cortex. Many arti-
ficial systems that implement bio-inspired software models use biological-like
(convolution based) processing that outperform more conventionally engineered
machines (Neubauer, 1998). These systems run at low speeds when implemented
as software programs on conventional computers. For real-time solutions direct
hardware implementations of these models are required. However, hardware
engineers face a large hurdle when trying to mimic the bio-inspired layered
structure and the massive connectivity within and between layers. A growing
number of research groups world-wide are mapping some of these computational
principles onto both real-time spiking hardware through the development and
exploitation of the so-called AER (Address Event Representation) technology,
and real-time streaming Frame-Based ConvNets on FPGAs.

ConvNets have been successfully used in many recognition and classification
tasks including document recognition (LeCun et al., 1998a), object recognition
(Huang & LeCun, 2006; Ranzato et al., 2007; Jarrett et al., 2009), face detection
(Osadchy et al., 2005) and robot navigation (Hadsell et al., 2007, 2009). A
ConvNet consists of multiple layers of filter banks followed by non-linearities
and spatial pooling. Each layer takes as input the output of previous layer
and by combining multiple features and pooling over space, extracts composite

2

Figure 1: Rate-coded AER inter-chip communication scheme.

features over a larger input area. Once the parameters of a ConvNet are trained,
the recognition operation is performed by a simple feed-forward pass.

The simplicity of the feed-forward pass has pushed several groups to imple-
ment it as custom hardware architectures. Most of ConvNet hardware imple-
mentations reported over the years are for the frame-constrained fix-pixel-value
version, as they map directly from the software versions. The first one was the
ANNA chip, a mixed high-end, analog-digital processor that could compute
64 simultaneous 8x8 convolutions at a peak rate of 4.109 MACs (multiply-
accumulate operations per second) (Boser et al., 1991; Säckinger et al., 1992).
Subsequently, Cloutier et al. proposed an FPGA implementation of ConvNets
(Cloutier et al., 1996), but fitting it into the limited-capacity FPGAs available
at those times required the use of extremely low-accuracy arithmetic. Modern
DSP-oriented FPGAs include large numbers of hard-wired multiply-accumulate
units that can greatly speed up compute-intensive operations, such as convolu-
tions. The frame-constrained system presented in this paper takes full advantage
of the highly parallel nature of ConvNet operations, and the high-degree of
parallelism provided by modern DSP-oriented FPGAs. Achieved peak rates are
in the order of 1011 MACs.

On the other hand, Frame-free Spiking-Dynamic-Pixel ConvNets compute
in the spike domain. No frames are used for sensing and processing the vi-
sual information. In this case, special sensors are required with a spike-based
output. Spike based sensors and processors typically use AER (Address-Event-
Representation) in order to transmit the internal state and/or results of the
neurons inside a chip or FPGA.

AER was originally proposed almost twenty years back in Mead’s Caltech
research lab (Sivilotti, 1991). Since then AER has been used fundamentally
in vision (retina) sensors, such as simple light intensity to frequency transfor-
mations (Culurciello et al., 2003; Posch et al., 2010), time-to-first-spike coding
(Ruedi et al., 2003; Chen & Bermak, 2007), foveated sensors (Azadmehr et al.,
2005), spatial contrast (Massari et al., 2008; Ruedi & other, 2009; Costas-
Santos et al., 2007; Leñero-Bardallo et al., 2010), temporal contrast (Posch
et al., 2010; Lichtsteiner et al., 1998; Leñero-Bardallo et al., 2011), motion

3

sensing and computation, (Boahen, 1999), and combined spatial and temporal
contrast sensing (Zaghloul & Boahen, 2004). But AER has also been used for
auditory systems (Chan et al., 2007), competition and winner-takes-all networks
(Chicca et al., 2007; Oster et al., 2008), and even for systems distributed over
wireless networks (T. Teixeira, 2006). After sensing, we need Spiking Signal
Event Representation techniques capable of efficiently processing the signal flow
coming out from the sensors. For simple per-event heuristic processing and
filtering, direct software based solutions can be used (Delbrück, 2005, 2008).
Other schemes rely on look-up table re-routing and event repetitions followed by
single-event integration (Vogelstein et al., 2007). Alternatively, we can find some
pioneering work in the literature aiming at performing convolutional filtering
on the AER flow produced by spiking retinas, (Vernier et al., 1997; Choi et al.,
2005), where the shape of the filter kernel was hardwired (either elliptic or
Gabor). Since 2006, working AER Convolution chips have been reported with
arbitrary shape programmable kernel of size up to 32×32 pixels pre-loaded onto
an internal kernel-RAM (Serrano-Gotarredona et al., 2006, 2008; Camuñas-Mesa
et al., 2011, 2012). This opens the possibility of implementing in AER spiking
hardware generic ConvNets, where large number of convolutional modules with
arbitrary size and shape kernels are required.

In this paper we present, discuss and compare two different neuro-cortex in-
spired approaches for real-time visual processing based on convolutions: Frame-
based fix-pixel-value and Frame-free dynamic-pixel-spiking ConvNet Processing
hardware.

Section 2 describes generic ConvNets and their structure. Section 3 briefly
describes frame-free ConvNet types of implementations, and Section 4 describes
a frame-constrained FPGA implementation. Implemention details will be given
in a very concise manner, so the reader can grasp the main ideas behind each
implementation. For more detailed descriptions the reader is refer to the cor-
responding references. Finally, Section 5 provides a comparison of both cases
indicating pros and cons of each.

2. Structure of generic ConvNets

Fig. 2 shows a typical hierarchical structure of a feed forward ConvNet.
Convolutional Networks (LeCun et al., 1990, 1998a), or ConvNets, are trainable
multistage architectures composed of multiple stages. The input and output of
each stage are sets of arrays called feature maps. For example, if the input is a
color image, each feature map would be a 2D array containing a color channel
of the input image (for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array). At the output,
each feature map represents a particular feature extracted at all locations on
the input tolerating degrees of deformations and sizes.

Each stage is composed of three layers: a filter bank layer, a non-linearity
layer, and a feature pooling layer. A typical ConvNet is composed of one, two or
three such 3-layer stages, followed by a classification module. Each layer type
is now described for the case of image recognition.

4

Input data

Pooling

Linear

Classifier

C1 feature maps

S2 feature maps

C3 feature maps

F4 maps

Convolutions Convs

{ } at (xi,yi)

Object

Categories / Positions

{ } at (xj,yj)

{ } at (xk,yk)

Figure 2: Architecture of a typical convolutional network for object recognition. This
implements a convolutional feature extractor and a linear classifier for generic N-class object
recognition. Once trained, the network can be computed on arbitrary large input images,
producing a classification map as output.

Filter Bank Layer - F : the input is a 3D array with n1 2D feature maps of size
n2×n3, and coordinates (xi, yi), with i = 1, . . . n1. Let’s call each input feature
map fi = (xi, yi), with xi = 1, . . . n2 and yi = 1, . . . n3. The output is also a 3D
array composed of m1 feature maps of size m2 × m3 and coordinates (Xj , Yj)
with j = 1, . . .m1. Let’s call each output feature map Fj = (Xj , Yj), with
Xj = 1, . . .m2 and Yj = 1, . . .m3. A trainable filter (kernel) wij in the filter
bank has size l1 × l2 and connects input feature map fi to output feature map
Fj . The module computes Fj = bj +

∑
i wij ∗ fi where ∗ is the 2D convolution

operator and bj is a trainable bias parameter. Each filter detects a particular
feature at every location on the input. Hence spatially translating the input
of a feature detection layer will translate the output but leave it otherwise
unchanged.
Non-Linearity Layer: In traditional ConvNets this simply consists of a point
wise tanh() sigmoid function applied to each site (Xj , Yj). However, recent im-
plementations have used more sophisticated non-linearities (Lyu & Simoncelli,
2008; Pinto et al., 2008).
Feature Pooling Layer: This layer treats each feature map separately. In its
simplest instance, called PA, it computes the average values over a neighborhood
in each feature map. This results in a reduced-resolution output feature map
which is robust to small variations in the location of features in the previous
layer. The average operation is sometimes replaced by a max PM . Traditional
ConvNets use a point wise tanh() after the pooling layer, but more recent models
do not.

Supervised training is performed using a form of stochastic gradient descent
to minimize the discrepancy between the desired output and the actual output
of the network. All the filter coefficients in all the layers are updated simul-
taneously by the learning procedure. The gradients are computed with the
back-propagation method. Details of the procedure are given in LeCun et al.,
1998a, and methods for efficient training are detailed in LeCun et al., 1998b.

5

3. Frame-Free Spiking-Dynamic-Pixel ConvNets

In frame-free spiking ConvNets the retina sensor pixels generate spikes au-
tonomously. Pixel activity changes continuously, as opposed to frame-based
systems, where the pixel value is frozen during each frame time. Such spikes
are sent to projection fields in the next layer, and the contribution of each spike
is weighted by a 2D spatial filter/kernel value wij over the projection field. In
the next layer pixels, incoming weighted spikes are accumulated (integrated)
until a pixel fires its own spike for the next layer, and so on. Each pixel in any
Convolution Module represents its state by its instantaneous spiking activity.
Consequently, each pixel at any layer has to be present at any time and its state
cannot be fetched in and out as in Frame-based approaches. This is the main
drawback of this approach: all ConvModules have to be there in hardware and
hardware resources cannot be time-multiplexed.

Adapting ConvNets to Spiking Signal Event based representations yields
some very interesting properties. The first one is the very reduced latency
between the input and output event flows of a spiking convolution processor.
We call this the “pseudo-simultaneity” between input and output visual flows.
This is illustrated by the example at the end of Section 3.

The second interesting property of implementing Spiking Event Convolutions
(or other operators, in general) is its modular scalability. Since event flows are
asynchronous, each AER link between two convolutional modules is independent
and needs no global system level synchronization.

And the third interesting property of spike based hardware, in general, is
that since processing is per-event, power consumption is, in principle, also per-
event. Since events usually carry relevant information, power is consumed as
relevant information is sensed, transmitted and processed.

Next we describe briefly three ways of computing with spiking ConvNets.
First, we briefly describe an event-based simulation software tool for emu-
lating such spiking AER hardware systems. Second, we briefly summarize
some programmable kernel VLSI implementations. And third, similar FPGA
implementations are discussed.

3.1. Software Simulator

A behavioral event-driven AER simulator has been developed for describing
and studying generic AER systems (Pérez-Carrasco, 2011). Such simulator is
very useful for designing and analyzing the operation of new hardware systems
combining existing and non-existing AER modules. Modules are user-defined
and they are interconnected as defined by a netlist, and inputs are given by
stimulus files. The simulator was written in C++. The netlist uses only two
types of elements: AER modules (instances) and AER links (channels). AER
links constitute the nodes of the netlist in an AER system. Channels represent
point-to-point connections. Splitter and merger instances are used for spreading
or merging links. Fig. 3 shows an example system and its text file netlist
description with 7 instances and 8 channels. Channel 1 is a source channel.

6

Figure 3: Example netlist and its ASCII file netlist description.

All its events are available a priori as an input file. These events can be pre-
recorded by a real AER retina (Lichtsteiner et al., 1998; Posch et al., 2010;
Leñero-Bardallo et al., 2011). Each instance is defined by a line. Instance
operation is described by a user-defined function. Channels are described by lists
of events. Once the simulator has finished, there will be a list of time-stamped
events for each node. Each event is defined by 6 values (TpR, TRqst, TAck, a, b, c).
The first 3 are timing parameters and the other three are open user-defined
parameters that the instances interpret and interchange. Usually, a and b are
the event address (x, y) and c its sign. TRqst is the time when an event Rqst
was generated and TAck when it was acknowledged. TpR is the time of creation
of an event (before communicating or arbitrating it out of its source module).
The simulator scans all channels looking for the earliest unprocessed TpR. This
event is processed: its TRqst and TAck are computed and the state of the event
destination modules are updated. If this creates new events, they are added
to the end of the corresponding links event lists, and the list is re-sorted for
indreasing TpR. Then the simulator looks again for the earliest unprocessed
TpR, and so on.

3.2. VLSI Implementation

Reported VLSI implementations of AER spiking ConvModules (either mixed-
signal (Serrano-Gotarredona et al., 2006, 2008) or fully digital (Camuñas-Mesa
et al., 2011, 2012)) follow the floor plan architecture in Fig. 4, where the follow-
ing blocks are shown: (1) array of lossy integrate-and-fire pixels, (2) static RAM
that holds the stored kernel in 2’s complement representation, (3) synchronous
controller, which performs the sequencing of all operations for each input event
and the global forgetting mechanism, (4) high-speed clock generator, used by
the synchronous controller, (5) configuration registers that store configuration
parameters loaded at startup, (6) left/right column shifter, to properly align the
stored kernel with the incoming event coordinates, (7) AER-out, asynchronous

7

circuitry for arbitrating and sending out the output address events generated by
the pixels, and (8) for the digital version a 2’s complement block is required to
invert kernel data before adding them to the pixels, if an input event is negative.
When an input event of address (x, y) is received, the controller copies row after
row the kernel values from the kernel-RAM to the corresponding pixel array
rows (the projection field), as indicated in Fig. 4. Then all pixels within this
projection field update their state: they add/subtract the corresponding kernel
weight depending on event and weight signs. When a pixel reaches its positive
or negative threshold, it signals a signed output event to the peripheral arbiters,
which send its address and sign out. Parallel to this per-event processing,
there is a global forgetting mechanism common for all pixels: pixel values are
decremented (if they are positive) or incremented (if they are negative) triggered
by a global periodic signal. This implements a constant leak of fixed rate that
discharges the neurons, allowing the ConvModule to capture dynamic reality
with a time constant in the order of this leak. A more formal mathematical
justification of this event-driven convolution operation can be found elsewhere
(Serrano-Gotarredona et al., 1999).

3.3. FPGA Implementation

Figure 5 shows the block diagram of an FPGA spike-based convolver. A
serial peripheral interface (SPI) is used to communicate with a USB micro-
controller in order to allow to change the configuration from a laptop (Kernel
matrix, kernel size, forgetting period and forgetting quantity). The circuit in
the FPGA can be divided into the following parallel blocks:

• A 64x64 array of memory cells: the matrix is implemented using a block
of dual-port RAM in the FPGA. Each position of the RAM is 8-bit length;

• Kernel memory: The kernel is stored also in the internal RAM of the
FPGA in an 11x11 matrix with 8-bit resolution;

• Conv state machine: Each input event corresponds to the address of a
pixel. Centered on this address, the kernel is added to the memory matrix,
which is used to save the state of the convolution cells. If any of the
modified cells reaches a value higher than a global programmable threshold
(Th), an output event with this cell address is queued to be sent through
the AER output bus, and the cell is reset.

• Forgetting mechanism. A configurable forgetting circuitry is also present
in the architecture. The forgetting is based on a programmable counter
that accesses the memory matrix periodically in order to decrease its values
by a constant.

• Memory arbiter. The 64x64 cell memory matrix is a shared resource
between the forgetting circuitry and the convolution state machine. There-
fore, a memory arbiter is required.

8

Figure 4: Architecture of the convolution chip.

9

Figure 5: Block diagram of the FPGA AER-based convolution processor (left) and its State
Machine (right).

• FIFO and AER output state machine: A 16 event first-input-first-output
buffer is used to store the outgoing events before they are transmitted by
the state machine using the asynchronous protocol.

• SPI State Machine. This controller is in charge of receiving kernel size and
values, forgetting period and amount to forget. The system is configured
and controlled through a computer running MATLAB.

The system has been implemented in hardware in a Virtex-6 FPGA. A
VHDL description of this ConvModule with 64x64 pixels and kernels of size
up to 11x11 has been used to program different ConvModule arrays into a
Virtex-6 FPGA, together with the corresponding inter-module communication
and event routing machinery. The internal structure of commercial FPGAs
with their internal memory arrangement and distribution is not optimum for
implementing event-driven parallel modules. Nonetheless, it was possible to
include an array of 64 Gabor filters, each with a specific scale and orientation
to perform a V1 visual cortex pre-processing on event data coming out of a
temporal difference retina (Zamarreño-Ramos, 2011; Zamarreño-Ramos et al.,
2012).

3.4. Example System and Operation

The example in Fig. 6 illustrates event driven sensing and processing, and
pseudosimultaneity, on a very simple two-convolution setup. Fig. 6(a) shows
the basic setup. A 52 card deck is browsed in front of a motion sensitive AER
retina (Leñero-Bardallo et al., 2011). Fig. 6(b) shows a picture taken with a
commercial camera with 1/60 sec (16.67ms) exposure time. Fig. 6(c) shows the

10

Figure 6: Illustration of pseudo-simultaneity in fast event-driven recognition. (a) Feed-forward
Two-Convolution system. (b) Photograph with commercial camera at 1/60 sec. (c) 5ms event
capture from AER motion retina. (d) Event rate computed using 10us bins. (e) First pre-
filtering Kernel. (f) Second template-matching kernel. (g) Events from real retina (red dots),
simulated output of first filter (green circles), and simulated output of second filter (blue
stars). (h) y/time zoom out. (i) x/y zoom out

11

Table 1: Frame-Free FPGA resource consumption

Resources of a Virtex5 30FXT # used

128x8-bit single-port block RAM 1

16x16-bit dual-port distributed RAM 1

4096x8-bit single-port block RAM 1

4-33bit Adders/Subtractors 33

4-5bit Counters 6

1-33bit Registers 235

4-33bit Comparators 36

Slices Registers 254 out of 20480 (1%)

Slices LUTs 658 out of 20480 (3%)

Block RAM/FIFO 2 out of 68 (2%)

Total memory (KB) 54 out of 2448 (2%)

events captured during a 5ms time window, while a card with “clover” symbols
is browsed. Fig. 6(d) shows the instantaneous event rate for the whole event
sequence when browsing the complete 52 card deck. Most cards are browsed in
a 410ms time interval, with peak event rate of about 8Meps (mega events per
second) computed on 10µs time bins. The events produced by the retina are
sent (event after event) to a first Event-Driven Convolution chip programmed
with the kernel in Fig. 6(e) to filter out noise and enhance shapes of a minimum
size. The output events produced by this first Convolution chip are sent to a
second Convolution chip programmed with the kernel in Fig. 6(f). This kernel
performs crude template matching to detect “clover” symbols of a specific size
and orientation. In order to perform more sophisticated size and pose invariant
object recognition a full multi-stage ConvNet would be necessary. However,
this simple example is sufficient to illustrate the pseudo-simultaneity property.
The two-convolution system was simulated using the simulator described in
Section 3.1 and using recorded event data taken from a real Motion Sensitive
retina (Leñero-Bardallo et al., 2011) using an event data logger board (Serrano-
Gotarredona et al., 2009). This event data logger board can record up to 500k
events with peak rates of up to 9Meps. Fig. 6(g) shows the retina events
(red dots), the first convolution output events (green circles) and the second
convolution output events (blue stars) in y vs. time projection, for a 85ms
time interval. One can see very clearly the events corresponding to 4 cards
(numbered ‘1’ to ‘4’ in the figure). Cards ‘2’ to ‘4’ contain “clover” symbols
that match the size and orientation of the kernel. Fig. 6(g) includes a zoom
box between 26 and 29ms. The events inside this zoom box are shown in Fig.
6(h) in y vs. time projection, and in Fig. 6(i) in y vs. x projection. As
one can see, between time 26 and 29ms a clear “clover” symbol is present at

12

the retina output (small red dots). The retina “clover” events range between
26.5 and 29ms (2.5ms duration). The output events of the first filter (green
circles) range between time 26.5 and 28.5ms (2.0ms duration), which is inside
the time window of the retina events. Consequently, retina and first convolution
streams are simultaneous. The output events of the second Convolution (thick
blue dots) are produced at time 27.8ms (1.3ms after the 1st retina “clover”
event and 1.2ms before the retina last “clover” event), which is during the time
the retina is still sending out events of the “clover” symbol, and also while the
first Convolution is still providing output events for this symbol. Note that the
second convolution needs to collect a very large number of events before making
a decision, because its kernel is very large. However, in a standard ConvNet
with many ConvModules, kernels are usually much smaller and would require
much less input events to start providing outputs, therefore also speeding up the
whole recognition process, in principle. As can be seen in Figs. 6(g-h), clover
symbol recognition is achieved even before the sensor has delivered all the events
that form the symbol. All this illustrates quite nicely the pseudo-simultaneity
property of frame-free event-driven systems.

This contrasts with the Frame-Constraint phylosophy. Even if one has a
very high speed video camera, say 1kframe/s, the system has first to acquire an
image (which would take 1ms), send it to a frame-contraint processing system
(like the one described in Section 4), and assuming it can provide an output
after another 1ms, the recognition result would be available 2ms after the start
of sensing. Although these times are comparable to what is shown in Fig.
6(h), the sensing output and the processing output are sequential, they are not
simultaneous. This is one key conceptual difference between the two approaches.
To understand how this extrapolates to multiple layers, let us refer to Fig.
7. At the top (a) there is a 6-layer ConvNet feature extraction system for
object recognition. Let us assume each layer contains a large number of feature
extraction ConvModules, whose outputs are sent to each subsequent layer. Let
us assume that we have a very fast Frame-based processing system per layer (as
the one described in the next Section) and that it is capable of computing all
feature maps within a layer in 1ms. Let us assume also that we have a very fast
sensor capable of providing a frame rate of one image per ms (1000fps), and
that the output of each stage can be transmitted to the next stage much faster
than in 1ms. Let us also assume that there is a sudden visual stimulus that lasts
for about 1ms or less. Fig. 7(b) shows the timing diagram for the outputs xi at
each subsequent layer of a Frame-based implementation. The sudden stimulus
happens between time 0 and 1ms, and the sensor output is provided at time
1ms. The first layer feature maps output is available at time 2ms, the second
at time 3ms, and so on until the last output is available at time 6ms. Fig. 7(c)
shows how the timing of the events would be in an equivalent six layer event-
driven implementation. As in Fig. 6, the sensor provides the output events
simultaneously to reality, thus during the interval from 0 to 1ms. Similarly, the
1st event-driven feature maps x1 would be available during the same interval,
and so on for all subsequent layers xi. Consequently, the final output x5 will be
available during the same time interval the sensor is providing its output, this

13

(c)

0

x1

x2

x3

x4

x5

x0 x1 x2 x3 x4 x5

S
en

so
r

x5

x4

x3

x2

x1

x0

0 1 2 3 5 6ms4

Reality

Reality

F
ra

m
e−

B
as

ed
E

ve
nt

−
B

as
ed

time

time

(a)

(b)

x

Figure 7: Illustration of pseudo-simultaneity concept extrapolated to multiple layers

14

is, during interval 0 to 1ms.
An immediate feature that the pseudo-simultaneity between input and out-

put event flows allows, is the possibility of efficiently implementing feedback
systems, as feedback would be instantaneous without any need to iterate for
convergence. However, this feature is not exploited in present day ConvNets,
because they are purely feed forward.

4. Frame-Constrained Fix-Pixel-Value ConvNets

In this section we present a run-time programmable data-flow architecture,
specially tailored for Frame-Constrained Fix-Pixel-Value ConvNets. We will
refer to this implementation as the FC-ConvNet Processor. The processor
receives sequences of still images (frames). For each frame, pixels have fix
(constant) values. The architecture presented here has been fully coded in
hardware description language (HDL) that target both ASIC synthesis and
programmable hardware like FPGAs.

A schematic summary of the FC-ConvNet Processor system is presented in
Figure 8(a). The main components are: (1) a Control Unit (implemented on a
general purpose CPU), (2) a grid of independent Processing Tiles (PTs), each
containing a routing multiplexer (MUX) and local operators, and (3) a Smart
DMA interfacing external memory via a standard controller.

The architecture presented here proposes a very different paradigm to par-
allelism, as each PT only contains useful computing logic. This allows us to
use the silicon surface in a most efficient way. In fact, where a typical multi-
processor system would be able to use 50 cores, the proposed data-flow grid
could implement 500 tiles.

For image processing tasks (ConvNets in this case), the following observa-
tions/design choices fully justify the use of this type of grid:

• Throughput is a top priority. Indeed, most of the operations performed
on images are replicated over both dimensions of images, usually bringing
the amount of similar computations to a number that is much larger than
the typical latencies of a pipelined processing tile.

• Reconfiguration time has to be low (in the order of the system’s latency).
This is achieved by the use of a common run-time configuration bus.
Each module in the design has a set of configurable parameters, routes
or settings (depicted as squares on Figure 8(a)), and possesses a unique
address on the network. Groups of similar modules also share a broadcast
address, which dramatically speeds up their reconfiguration.

• The processing elements in the grid should be as coarse grained as per-
mitted, to maximize the ratio between computing logic and routing logic.

• The processing elements should not have any internal state, but should just
passively process any incoming data. The task of sequencing operations
is done by the global control unit, which stores the state and simply

15

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

∑π %

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

X +

%

MUX.

Control

 & Config

Smart DMA

Configurable Route Global Data Lines Runtime Config Bus (indication on the width)(indication on the width)

Off-chip

Memory

Mem∑π Mem∑π Mem

∑π Mem ∑π Mem

∑π Mem∑π Mem

∑π Mem

∑π Mem

A Runtime Reconfigurable Dataflow Architecture

PT PT PT

PTPTPT

PT PT PT

(a)

X +

∑π %

MUX.

Mem

PT

56

7

X +

%

MUX.

X +

∑π %

MUX.

X +

%

MUX.

X +

%

MUX.

Smart DMA.

Configurable Route Active Data Lines

Off-chip

Memory

Mem

∑π Mem∑π Mem
∑π Mem

PT

PT PT PT

Active Route

1

23

4

X +

∑π %

MUX.

Mem

PT

89

X +

∑π %

MUX.

Mem

PT

56

7

X +

∑π %

MUX.

Mem

PT

23

4

X +

∑π %

MUX.

Mem

PT

89

1

10

1111

13 12

14

16 15

17

(b)

Figure 8: a) A data-flow computer. A set of runtime configurable processing tiles are connected
on a 2D grid. They can exchange data with their 4 neighbors and with an off-chip memory
via global lines. b) The grid is configured for a more complex computation that involves
several tiles: the 3 top tiles perform a 3 × 3 convolution, the 3 intermediate tiles another
3 × 3 convolution, the bottom left tile sums these two convolutions, and the bottom centre
tile applies a function to the result.

16

configures the entire grid for a given operation, lets the data flow in,
and prepares the following operation.

Figure 8(b) shows how the grid can be configured to compute a sub-part of a
ConvNet (a sum of two convolutions is fed to a non-linear mapper). In that par-
ticular configuration, both the kernels and the images are streams loaded from
external memory (the filter kernels can be preloaded in local caches concurrently
to another operation). By efficiently alternating between grid reconfiguration
and data streaming, an entire ConvNet can be computed (unrolled in time).

A compiler takes a software representation of a trained ConvNet, and pro-
duces the binary code to be executed on the Control Unit. The ConvNet
Processor can be reprogrammed with new binary code at run-time.

The compiler typically executes the following operations:

• Step 1: Analyses a given ConvNet layer by layer, and performs cross-layer
optimizations (like layer combinations and merging).

• Step 2: Creates a memory map with efficient packing, to place all inter-
mediate results (mostly feature maps for ConvNets) in a minimal memory
footprint.

• Step 3: Decomposes each layer from step 1 into sequences of grid re-
configurations and data streams. Each reconfiguration results in a set of
operations to be performed by the Control Unit and each data stream
results in a set of operations for the Smart DMA (to read/write from/to
external memory).

• Step 4: Results from Step 3 are turned into a fully sequential binary code
for the Control Unit.

Our architecture was implemented on two FPGAs, a low-end Virtex 4 with
limited memory bandwidth and a high-end Virtex 6 with fourfold memory
bandwidth.

Figure 9 shows the time taken to compute a typical ConvNet trained for
scene analysis / obstacle detection (pixel-wise classification, see Hadsell et al.
(2009)), on different computing platforms. The CPU implementation is classical
C implementation using BLAS libraries. The GPU implementation is a hand-
optimized implementation that uses as many of the cores as possible. The GPU,
an nVidia 9400M is a middle-range GPU optimized for low-power. As can be
seen, the most generic hardware (CPU) is the least efficient because it is less
parallel and relies on heavy processor-memory traffic. The GPU improves about
an order of magnitude, as more parallelism is achieved. FPGA implementations
can be made to exploit massive parallelism with high-bandwidth memories,
thus achieving much higher efficiencies. Finally, a dedicated ASIC in a high end
technology would be optimum.

17

0 100 200 300 400 500 600 700 800
connections per input patch (x10^3)

100

101

102

103

104

105

ti
m

e
 (

m
s)

FPGA (Virtex4, 200MHz)

FPGA (Virtex6, 200MHz)

ASIC (IBM65nm, 600MHz)

GPU (330m, 1.3GHz)

CPU (DuoCore2, 2.6GHz)

Figure 9: Computing time for a typical ConvNet, versus the number of connections used for
training the network.

5. Comparison between Frame-Constrained and Frame-Free-Spiking
ConvNets

In order to compare Frame-Constrained vs. Frame-Free spiking hardware
performance of ConvNets implementations, we need to be aware of the funda-
mental difference between information coding of both approaches.

In a Frame-Constrained vision system, visual reality is sampled at a rate
Tframe. The input to the system is then, for each Tframe, an array of N ×M
pixels each carrying an n-bit value. There is a fixed amount of input information
per frame. For a given ConvNet topology (as in Fig. 2), one knows exactly
the number and type of operations that have to be carried out starting from
the input frame. Depending on the available hardware resources (multipliers,
adders, accumulators, etc) one can estimate the delay in processing the full
ConvNet for one input image, independently on the content of the image. If
the full ConvNet operators can be mapped one by one onto respective hardware
operators, then no intermediate computation data has to be fetched in and
out from the chip/FPGA to external memory. This is the ideal case. How-
ever, in practical implementations to-date, either the input image is processed
by patches, or the ConvNet is processed by parts within the hardware, or a
combination of both, using extensive chip/FPGA to external memory traffic.

18

Let’s call Rhw the ratio between the available hardware resources and all the
hardware resources a given ConvNet would require to compute the full input
frame without fetching intermediate data to/from external memory. Then, in
Frame-Constrained Fix-Pixel-Value ConvNets speed is a strong function of Rhw

and the external memory bandwidth.
In a Frame-Free Spiking System, sensor pixels generate spikes continuously

and asynchronously. Visual information is represented by a flow of events, each
defined in 3D (x, y, t). Many times an event carries also “sign” information
(positive or negative). The number of spikes per second in the visual flow
is highly dependent on scene information content (as opposed to the Frame-
Constrained case). In Frame-Free Spiking systems, the full ConvNet structure
(as in Fig. 2) must be available in hardware. Consequently, Rhw = 1. This is due
to the fact that visual information at each node of the ConvNet is represented by
a sequence or flow of events that “fill” the time scale and keep synchrony among
all nodes. The great advantage of this is that the different flows are practically
simultaneous because of the “pseudo-simultaneity” property of input-to-output
flows in each ConvNet module. The processing delay between input to output
flows is determined mainly by the statistics of the input event flow data. For
example, how many space-time correlated input events need to be collected that
represent a given shape. If one tries to time-multiplex the hardware resources
(for implementing larger networks, for example) then the flows would need to be
sampled and stored, which would convert the system into a Frame-Constrained
one. Consequently, if one wants to scale up a Frame-Free Spiking ConvNet,
then it is necessary to add more hardware modules. In principle, this should
be simple, as inter-module links are asynchronous and modules are all alike.
As the system scales up, however, processing speed is not degraded, as it
is determined by the statistical information content of the input event flow.
Note that this is a fundamental difference with respect to Frame-constrained
systems, where one needs to first wait for the sensor to provide a full frame
before starting processing it. Scaling up a spiking system does not affect the
pseudo-simultaneity property. An important limitation will be given by the
inter-module event communication bandwidth. Normally, event rate lowers as
processing is performed at subsequent stages. Thus the highest event rate
is usually found at the sensor output. Consequently, it is important that
the sensors include some kind of pre-processing (such as spatial or temporal
contrast) to guarantee a rather sparse event count.

Although present day ConvNets are purely feed forward structures, it is
widely accepted that computations in brains exploit extensive use of feedback
between processing layers. In a Frame-constraint system, implementing feed-
back would require to iterate each feedforward pass until convergence, for each
frame. On the other hand, in Frame-free event-driven systems, since input and
output flows at each module are instantaneous, feedback would be instantaneous
as well, without any need for iterations.

Another big difference between Frame-Constrained and Frame-Free imple-
mentations is that the first one is technologically more mature while the second
one is very incipient and in research phase.

19

Table 2: Frame-Free vs. Frame-Constrained

Frame-Free Frame-Constrained

Data
Processing

Per event, resulting in
pseudo-simultaneity

Per Frame/Patch

Hardware
multiplexing

not possible possible

Hardware
up-scaling

by adding modules ad-hoc

Speed determined by statistics of
input stimuli

determined by number
and type of operations,
available hardware
resources and their speed

Power
Consumption

determined by module
power per event, and inter-
module communication
power per event

determined by power of
processor(s) and memory
fetching requirements

Feedback instantaneous.
No need to iterate

need to iterate until
convergence for each frame

Table 2 summarizes the main differences between both approaches in terms of
how data is processed, whether hardware multiplexing is possible, how hardware
can be scaled-up, and what determines processing speed and power consump-
tion. Note that AER spiking hardware is easily expandable in a modular
fashion by simply interconnecting AER links (Serrano-Gotarredona et al., 2009;
Zamarreño-Ramos et al., 2012). However, expanding the FPGA hardware
described in Section 4 is not so straight forward and dedicated ad-hoc techniques
need to be developed.

Table 3 compares numerically performance figures of comparable ConvNets
implemented using either Frame-Constrained fix-pixel-value or Frame-free spiking-
dynamic-pixel techniques. The first two columns show performance figures of
arrays of Gabor filters synthesized into Virtex-6 FPGAs. The Purdue/NYU
system implements an array of 16 parallel 10x10 kernel Gabor filters operating
on input images of 512x512 pixels with a delay of 5.2ms, thus equivalent to
4M-neurons with 400M-synapses and a computing power of 7.8 × 1010conn/s.
The IMSE/US system implements an array of 64 Gabor filters operating on
input visual scenes of 128x128 pixels with delays of 3µs per event per module,
thus equivalent to 0.26M-neurons with 32M-synapses and a computing power
of 2.6× 109conn/s.

Note that while the 5.2ms delay of the Purdue/NYU Frame-Constraint
system represents the filtering delay of 16 ConvModules, the 3µs/event delay of
the IMSE/US system does not represent a filtering delay. This number simply
characterizes the intrinsic speed of the hardware. The filtering or recognition

20

delay will be determined by the statistical time distribution of input events. As
soon as enough input events are available that allow the system to provide a
recognition decision, an output event will be produced (3µs after the last input
event).

The third and fourth columns represent performance estimations for futur-
istic Frame-constrained and Frame-free systems. Column 3 corresponds to the
ASIC systems projected for a high-end 3D technology (see Fig. 9), where speed
is improved a factor four for a given number of connections with respect to the
Virtex-6 realization. Column four corresponds to the estimated performance for
an array of 100 reconfigurable multi-module 40nm technology chips. Based on
the performance figures of an already tested event-driven ConvChip fabricated
in 0.35µm CMOS (Camuñas-Mesa et al., 2011, 2012), which holds an array of
64× 64 pixels in about 5× 5mm2, it is reasonable to expect that a 1cm2 square
die fabricated in 40nm CMOS could hold 1 million neurons with 1G-synapses. In
order to improve event throughput, processing pixels should be tiled into slices
to avoid very long lines and pipeline/parallelize event processing. Off-chip event
communication should be done serially (Zamarreño-Ramos et al., 2011a,b), and
possibly using multiple I/O ports to improve inter-chip throughput. All this
could probably improve event throughput by a factor of 100 with respect to
the presented prototype. Consequently, we might consider as viable, event
throughputs in the order of 108eps (events per second) per chip. Using AER-
mesh techniques (Zamarreño-Ramos, 2011; Zamarreño-Ramos et al., 2012) to
assemble modularly a grid of 10 × 10 such chips on a (stackable) PCB would
allow for a ConvNet system with about 108 neurons and 1011 synapses, which
is about 1% of the human cerebral cortex (Azevedo & et al., 2009), in terms of
number of neurons and synapses. The brain is certainly more sophisticated and
has other features not considered here, such as learning, synaptic complexity,
stochastic and molecular computations, and more.

In order to compare the effective performance capability of Frame-Constraint
versus Frame-Free hardware, the most objective criteria is to compare their
“connections/sec” capability, as shown in the bottom of Table 3. However,
these numbers should also not be judged as strictly equivalent, because while the
Frame-Free version computes connections/sec on active pixels only, the Frame-
Constraint version has to compute connection/s for all pixels thus introducing
an extra overhead. This overhead depends on the statistical nature of the data.

6. Conclusions

We have presented a comparison analysis between Frame-Constrained and
Frame-Free Implementations of ConvNet Systems for application in object recog-
nition for vision. We have presented example implementations of Frame-Constrained
FPGA realization of a full ConvNet system, and partial convolution processing
stages (or combination of stages) using spiking AER convolution hardware
using either VLSI convolution chips or FPGA realizations. The differences
between the two approaches in terms of signal representations, computation
speed, scalability, and hardware multiplexing have been established.

21

Table 3: Performance Comparison

Purdue/NYU IMSE/US 3D ASIC Grid 40nm

input
scene
size

521x512 128x128 512x512 512x512

delay 5.2ms/frame 3µs/event 1.3ms/frame 10ns/events

Gabor
array

16 convs
10x10 kernels

64 convs
11x11
kernels

16 convs
10x10
kernels

100 convs
32x32
kernels

neurons 4.05× 106 2.62× 105 4.05× 106 108

synapses 4.05× 108 3.20× 107 4.05× 108 1011

conn/s 7.8× 1010 2.6× 109 3× 1011 4× 1013

References

Azadmehr, M., Abrahamsen, J., & Häfliger, P. (2005). A foveated AER imager
chip. Proc. of the IEEE Int. Symp. on Circ. and Syst. (ISCAS2005), (pp.
2751–2754).

Azevedo, F. A., & et al. (2009). Equal numbers of neuronal and nonneuronal
cells make the human brain an isometrically scaled-up primate brain. The
Journal of Comparative Neurology , 513 , 532–541.

Boahen, K. (1999). Retinomorphic chips that see quadruple images. Proc.
Int. Conf. Microelectronics for Neural, Fuzzy and Bio-Inspired Systems
(Microneuro99), (pp. 12–20).

Boser, B., Säckinger, E., Bromley, J., LeCun, Y., & Jackel, L. (1991). An
analog neural network processor with programmable topology. IEEE Journal
of Solid-State Circuits, 26 , 2017–2025.

Camuñas-Mesa, L., Acosta-Jiménez, A., Zamarreño-Ramos, C., Serrano-
Gotarredona, T., & Linares-Barranco, B. (2011). A convolution processor
chip for address event vision sensors with 155ns event latency and 20Meps
throughput. IEEE Transaction on Circuits and Systems, 58 , 777–790.

Camuñas-Mesa, L., Zamarreño-Ramos, C., Linares-Barranco, A., Acosta-
Jiménez, A., Serrano-Gotarredona, T., & Linares-Barranco, B. (2012). An
event-driven convolution processor module for event-driven vision sensors.
IEEE Journal of Solid-State Circuits, 47 , x–x.

Chan, V., Liu, S.-C., & van Schaik, A. (2007). AER EAR: A matched silicon
cochlea pair with address event representation interface. IEEE Trans. Circ.
Syst. Part-I , 54 , 48–59.

22

Chen, S., & Bermak, A. (2007). Arbitrated time-to-first spike cmos image
sensor with on-chip histogram equalization. IEEE Trans. VLSI Systems, 15 ,
346–357.

Chicca, E., Whatley, A. M., Lichtsteiner, P., Dante, V., Delbrück, T.,
Del Giudice, P., Douglas, R. J., & Indiveri, G. (2007). A multichip pulse-based
neuromorphic infrastructure and its application to a model of orientation
selectivity. IEEE Trans. Circ. Syst. Part I , 54 , 981–993.

Choi, T. Y. W., Merolla, P., Arthur, J., Boahen, K., & Shi, B. E. (2005).
Neuromorphic implementation of orientation hypercolumns. IEEE Trans. on
Circuits and Systems (Part I), 52 , 1049–1060.

Cloutier, J., Cosatto, E., Pigeon, S., Boyer, F., & Simard, P. Y. (1996). Vip:
An fpga-based processor for image processing and neural networks. In Fifth
International Conference on Microelectronics for Neural Networks and Fuzzy
Systems (MicroNeuro’96) (pp. 330–336). Lausanne, Switzerland.

Costas-Santos, J. et al. (2007). A contrast retina with on-chip calibration for
neuromorphic spike-based AER vision systems. IEEE Trans. Circ. Syst. I:
Reg. Papers, 54 , 1444–1458.

Culurciello, E., Etienne-Cummings, R., & Boahen, K. (2003). A biomorphic
digital image sensor. IEEE Journal of Solid-State Circuits, 38 , 281 –294.

Delbrück, T. (2005). http://jaer.wiki.sourceforge.net, .

Delbrück, T. (2008). Frame-free dynamic digital vision. Proc. of Intl. Symp. on
Secure-Life Electronics, Advanced Electronics for Quality Life and Society ,
(pp. 21–26).

Hadsell, R., Sermanet, P., Erkan, A., Ben, J., Han, J., Flepp, B., Muller, U.,
& LeCun, Y. (2007). On-line learning for offroad robots: Using spatial label
propagation to learn long-range traversability. In Proc. Robotics Science and
Systems 07 .

Hadsell, R., Sermanet, P., Scoffier, M., Erkan, A., Kavackuoglu, K., Muller,
U., & LeCun, Y. (2009). Learning long-range vision for autonomous off-road
driving. Journal of Field Robotics, 26 , 120–144.

Huang, F.-J., & LeCun, Y. (2006). Large-scale learning with svm and
convolutional nets for generic object categorization. In Proc. Computer Vision
and Pattern Recognition Conference (CVPR’06). IEEE Press.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the
best multi-stage architecture for object recognition? In Proc. International
Conference on Computer Vision (ICCV’09). IEEE.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., & Jackel, L. D. (1990). Handwritten digit recognition with a back-
propagation network. In NIPS’89 .

23

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998a). Gradient-based
learning applied to document recognition. Proceedings of the IEEE , 86 , 2278–
2324.

LeCun, Y., Bottou, L., Orr, G., & Muller, K. (1998b). Efficient backprop. In
G. Orr, & M. K. (Eds.), Neural Networks: Tricks of the trade. Springer.

Leñero-Bardallo, J. A., Serrano-Gotarredona, T., & Linares-Barranco, B.
(2010). A five-decade dynamic-range ambient-light-independent calibrated
signed-spatial-contrast AER retina with 0.1ms latency and optional time-to-
first-spike mode. IEEE Trans. Circ. Syst. I: Reg. Papers, 57 , 2632–2643.

Leñero-Bardallo, J. A., Serrano-Gotarredona, T., & Linares-Barranco, B.
(2011). A 3.6µs latency asynchronous frame-free event-based dynamic vision
sensor. IEEE J. Solid-State Circuits, 46 , 1443–1455.

Lichtsteiner, P., Posch, C., & Delbrück, T. (1998). A 128128 120db 15us latency
asynchronous temporal contrast vision sensor. IEEE Journal of Solid State
Circuits, 43 , 566–576.

Lyu, S., & Simoncelli, E. P. (2008). Nonlinear image representation using
divisive normalization. In CVPR.

Massari, N. et al. (2008). A 100uw 64x128-pixel contrast-based asynchronous
binary vision sensor for wireless sensor networks. IEEE ISSCC Dig. of Tech.
Papers, (pp. 588–638).

Neubauer, C. (1998). Evaluation of convolution neural networks for visual
recognition. IEEE Transactions on Neural Networks, 9 , 685–696.

Osadchy, R., Miller, M., & LeCun, Y. (2005). Synergistic face detection and
pose estimation with energy-based model. In Advances in Neural Information
Processing Systems (NIPS 2004). MIT Press.

Oster, M. et al. (2008). Quantification of a spike-based winner-take-all vlsi
network. IEEE Trans. Circ. Syst. Part-1 , 55 , 3160–3169.

Pérez-Carrasco, J. A. (2011). A Simulation Tool for Building and Analyzing
Complex and Hierarchically Structured AER Visual Processing Systems.
Ph.D. thesis IMSE-CNM-CSIC, Univ. de Sevilla.

Pinto, N., Cox, D. D., & DiCarlo, J. J. (2008). Why is real-world visual object
recognition hard? PLoS Comput Biol , 4 , e27.

Posch, C. et al. (2010). A QVGA 143dB DR asynchronous address-event PWM
dynamic vision and image sensor with lossless pixel-level video compression
and time-domain CDS. ISSCC Dig. of Tech. Papers, in press, .

24

Ranzato, M., Huang, F., Boureau, Y., & LeCun, Y. (2007). Unsupervised learn-
ing of invariant feature hierarchies with applications to object recognition.
In Proc. Computer Vision and Pattern Recognition Conference (CVPR’07).
IEEE Press.

Ruedi, P. F., & other (2009). An soc combining a 132db qvga pixel array and
a 32b dsp/mcu processor for vision applications. IEEE ISSCC Dig. of Tech.
Papers, (pp. 46–47,47a).

Ruedi, P. F. et al. (2003). A 128 × 128, pixel 120-db dynamic-range vision-
sensor chip for image contrast and orientation extraction. IEEE Journal of
Solid-State Circuits, 38 , 2325–2333.

Säckinger, E., Boser, B., Bromley, J., LeCun, Y., & Jackel, L. D. (1992).
Application of the ANNA neural network chip to high-speed character
recognition. IEEE Transaction on Neural Networks, 3 , 498–505.

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-
Vicente, R., Gómez-Rodŕıguez, F., Camuñas-Mesa, L., Berner, R., Rivas-
Pérez, M., Delbrück, T., Liu, S.-C., Douglas, R., Häfliger, P., Jiménez-
Moreno, G., Ballcels, A. C., Serrano-Gotarredona, T., Acosta-Jiménez, A. J.,
& Linares-Barranco, B. (2009). CAVIAR: a 45k neuron, 5M synapse, 12G
connects/s AER hardware sensory-processing-learning-actuating system for
high-speed visual object recognition and tracking. IEEE Trans. Neural Netw.,
20 , 1417–1438.

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jiménez, A., &
Linares-Barranco, B. (2006). A neuromorphic cortical-layer microchip for
spike-based event processing vision systems. IEEE Trans. Circuits and
Systems I: Regular Papers, 53 , 2548–2566.

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jiménez, A.,
Serrano-Gotarredona, C., Pérez-Carrasco, J. A., Linares-Barranco, B.,
Linares-Barranco, A., Jiménez-Moreno, G., & Civit-Ballcels, A. (2008).
On real-time AER 2-D convolution hardware for neuromorphic spike-based
cortical processing. IEEE Trans. on Neural Networks, 19 , 1196–1219.

Serrano-Gotarredona, T., Andreou, A. G., & Linares-Barranco, B. (1999).
AER image filtering architecture for vision processing systems. IEEE Trans.
Circuits and Systems (Part I): Fundamental Theory and Applications, 46 ,
1064–1071.

Serre, T. (2006). Learning a Dictionary of Shape-Components in Visual Cortex:
Comparison with Neurons, Humans and Machines. Ph.D. thesis MIT.

Shepherd, G. (1990). The Synaptic Organization of the Brain. (3rd ed.). Oxford
University Press.

25

Sivilotti, M. A. (1991). Wiring considerations in analog VLSI systems, with
application to field-programmable networks. Technical Report California
Institute of Technology.

T. Teixeira, E. C., A.G. Andreou (2006). An address-event image sensor
network. In IEEE International Symposium on Circuits and Systems, ISCAS
’06 (pp. 4467 – 4470). Kos, Greece: IEEE.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human
visual system. Nature, 381 , 520–522.

Vernier, P., Mortara, A., Arreguit, X., & Vittoz, E. A. (1997). An integrated
cortical layer for orientation enhancement. IEEE J. Solid-State Circuits, 32 ,
177–186.

Vogelstein, R. J., Mallik, U., Culurciello, E., Cauwenberghs, G., & Etienne-
Cummings, R. (2007). A multi-chip neuromorphic system for spike-based
visual information processing. Neural Comput., 19 , 2281–300.

Zaghloul, K. A., & Boahen, K. (2004). Optic nerve signals in a neuromorphic
chip: Parts 1 and 2. IEEE Trans.Biomed Eng., 51 , 657–675.

Zamarreño-Ramos, C. (2011). Towards Modular and Scalable High-Speed AER
Vision Systems. Ph.D. thesis IMSE-CNM-CSIC, Univ. de Sevilla.

Zamarreño-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., &
Linares-Barranco, B. (2012). Multi-casting mesh aer: A scalable assembly
approach for reconfigurable neuromorphic structured aer systems. application
to convnets. IEEE Trans. Biomedical Circuits and Systems, Under Review ,
x–x.

Zamarreño-Ramos, C., Serrano-Gotarredona, T., & Linares-Barranco, B.
(2011a). An instant-startup jitter-tolerant manchester-encoding serial-
izer/deserializar scheme for event-driven bit-serial lvds inter-chip aer links.
IEEE Trans. Circ. and Syst. Part-I , 58 , 2647–2660.

Zamarreño-Ramos, C., Serrano-Gotarredona, T., Linares-Barranco, B., Kulka-
rni, R., & Silva-Martinez, J. (2011b). Voltage mode driver for low power
transmission of high speed serial aer links. Proc. IEEE Int. Symp. on Circ.
and Syst. (ISCAS 2011), Rio de Janeiro, Brazil , (pp. 2433–2436).

26

