e-- Lab

Deep Learning, machine-learning hardware, neural networks, biomedical instrumentation, integrated circuits

A little about us

We work on Deep Learning software and hardware. Our goal is to replicate the human brain in algorithms and computing devices.

Research questions: “How do we teach machines to understand the 3D world we live in, to see, to hear, to predict what is coming?”, “How do we decompose data, speech, text, images, and videos into a learnable hierarchical set of learnable functions?”, “How do we use these functions to generate action and intelligent behavior in a real-life environment?”, “What hardware can we use to accelerate machine learning and inference?”: these are the scientific questions we are currently after.

Research philosophy: We specialize in the use of computing technologies (deep learning, machine learning, artificial intelligence, AI, microchips and systems of computing devices and sensors) to extend scientific exploratory methods and measurement tools for the endeavor of understanding life and replicating it in engineered systems.

Team: Eugenio Culurciello

Deep Learning software and algorithms

We are the pioneers in deep learning and neural networks, with more than 20 years of experience. I have worked on convolutional neural networks for vision, on LSTM and Transformers for vision, speech, text, NLP, on reinforcement learning for robotics, on AI for 3D and graphics, to name a few.


Read more
Deep Learning processors and accelerators

We are the de-facto leaders in hardware processors and accelerators for deep learning. I pioneered the design and developement of 5 generation of deep learning processor and accelerators from 2004-present.


Read more
Micro-chips

We worked for more than 20 years on the design, fabrication, testing and characterization of silicon devices and circuits and systems for biomedical applications, neuromorphic engineering, silicon-on-insulator and silicon-on-sapphire.


Read more
Scaling Up Machine Learning

Chapter: "Large-Scale FPGA-Based Convolutional Networks" in "Scaling Up Machine Learning", Cambridge University Press book 2011, edited by Ron Bekkerman, Misha Bilenko, and John Langford, chapter authors: C. Farabet, Y. LeCun, K. Kavukcuoglu, B. Martini, P. Akselrod, S. Talay and E Culurciello.


Ordering info
Silicon-on-Sapphire Circuits and Systems, sensor and biosensor interfaces

"Silicon-on-Sapphire Circuits and Systems, sensor and biosensor interfaces", E. Culurciello, McGraw Hill 2009.


Ordering info
Biomedical Circuits and Systems

"Biomedical Circuits and Systems", Integrated Instrumentation, by Wei Tang, Evan Joon Hyuk Park, Brian Goldstein, Dongsoo Kim, Pujitha Weerakoon, Eugenio Culurciello, e-Lab. Lulu 2013.


Ordering info E-book Ordering info